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Abstract

The three-dimensional $nite bin packing problem (3BP) consists of determining the minimum
number of large identical three-dimensional rectangular boxes, bins, that are required for allo-
cating without overlapping a given set of three-dimensional rectangular items. The items are
allocated into a bin with their edges always parallel or orthogonal to the bin edges. The problem
is strongly NP-hard and $nds many practical applications. We propose new lower bounds for
the problem where the items have a $xed orientation and then we extend these bounds to the
more general problem where for each item the subset of rotations by 90◦ allowed is speci$ed.
The proposed lower bounds have been evaluated on di4erent test problems derived from the
literature. Computational results show the e4ectiveness of the new lower bounds.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The three-dimensional &nite bin packing problem (3BP) consists of determining the
minimum number of large identical three-dimensional rectangular boxes, bins, that are
required for allocating without overlapping a given set of rectangular items, each with
a given size. The items are allocated with their edges always parallel or orthogonal
to the bin edges and they can have a $xed orientation or can be rotated by 90◦. The
3BP $nds many practical applications as it is a simpli$ed version of many real world
problems, e.g. container and pallet loading.
The 3BP is a generalization of the well-known one-dimensional Bin Packing Prob-

lem (1BP), where n items of given weight wi have to be packed into the minimum
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number of bins of capacity W . Therefore, the 3BP is strongly NP-hard as well as the
1BP (see Garey and Johnson [10]).
In practical applications there exist many versions of the 3BP. In the literature

the oriented 3BP is the problem where item rotation is not allowed, while the non-
oriented 3BP is the problem where every items can perform all the feasible rotations
by 90◦. According to the classi$cation of Lodi et al. [12] for the two-dimensional Bin
Packing Problem (2BP), we denote the oriented and nonoriented 3BP with 3BP|O|F
and 3BP|R|F, respectively. In this paper, we $rst consider the 3BP|O|F and then we
extend our results to a more general version of 3BP where for each item the subset of
allowed 90◦ rotations is speci$ed. Following the aforementioned classi$cation scheme
we propose to denote this problem with 3BP|M|F. The 3BP|M|F contains as special
cases problems 3BP|O|F and 3BP|R|F.
Heuristic methods for the 3BP|O|F are recently proposed by Faroe et al. [7] and

Lodi et al. [13].
Only one exact method for the 3BP|O|F is presented in the literature and it is

proposed by Martello et al. [15]. A new lower bound that dominates those proposed
by Martello et al. [15] is discussed in Fekete and Schepers [9]. At our knowledge,
neither exact methods nor lower bounds are proposed in the literature for problems
3BP|R|F and 3BP|M|F.
Extensive survey on cutting and packing problems can be found in Co4man et al.

[3], Co4man et al. [2], Dowsland and Dowsland [4], Dyckho4 and Finke [5], Dyckho4
et al. [6], Lodi et al. [14] and Lodi et al. [11].

In this paper, we propose new lower bounds for problems 3BP|O|F of complexity
O(n5) that dominate the ones proposed by Martello et al. [15] and Fekete and Schepers
[8] both having complexity O(n2). The computational analysis on test problems from
the literature shows the e4ectiveness of the new lower bounds once implemented into
the same exact algorithm of Martello et al. [15]. The resulting exact method is able to
solve problems unsolved by the original exact algorithm of Martello et al. [15] and it
requires on average less computing time.
The remaining of this paper is organized as follows. In Section 2, we give the prob-

lem de$nition and the notation used throughout the paper. In Section 3, we summarize
the lower bounds for the 3BP|O|F presented in the literature. New lower bounds for the
3BP|O|F are presented in Section 4. In Section 5, we extend these new lower bounds
to the more general problem 3BP|M|F. In Section 6, the computational performance of
the new lower bounds is given on test problems derived from the literature.

2. Problem description

An unlimited stock of three-dimensional rectangular bins of size (W;H;D) are given
and n three-dimensional rectangular items of sizes (wj; hj; dj); j∈ J = {1; : : : ; n}, are
required to be placed into the bins. The objective is to allocate without overlapping all
items into the minimum number of bins.
We consider both cases where items cannot be rotated, i.e., 3BP|O|F, and where

items can be rotated by 90◦, i.e., 3BP|M|F, described in Section 5. We assume that
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the sizes of bins and of items are positive integers satisfying wj6W , hj6H and
dj6D, for every item j∈ J .
We denote with V =W × H × D the volume of the bin and with vj = wj × hj × dj

the volume of item j∈ J .

2.1. De&nitions

Let I be an instance of a minimization problem P; Z(I) be the value of the optimal
solution to I and L(I) be the value provided by a lower bound L. The worst-case
performance ratio of L is de$ned as the largest real number � such that �6L(I)=Z(I)
for all instance I of P (see also [15,16]).
Given a minimization problem P and two di4erent lower bounds L1 and L2; L1

dominates L2 if and only if L1(I)¿L2(I) for all instance I of P. Henceforth, when
L1 dominates L2 we also write L1¿L2.

2.2. The continuous lower bound L0

A simple lower bound L0 for problems 3BP|O|F and 3BP|M|F, called continuous
lower bound, can be computed in O(n) time as follows:

L0 =

⌈∑n
j=1 vj
V

⌉
: (1)

Martello et al. [1] have shown that for problem 3BP|O|F the optimal solution value
in the worst case can be up to 8 times the L0 value, i.e., the worst-case performance
ratio of lower bound L0 is 1

8 .

3. Lower bounds for the 3BP|O|F

In this section, we survey the lower bounds proposed by Martello et al. [15] and
Fekete and Schepers [9] for the 3BP|O|F. These bounds will be used in Sections 4
and 6 to evaluate the quality of the new proposed lower bounds.

3.1. The lower bound by Martello et al.

In this section, we brieJy describe the lower bounds L1 and L2 proposed by Martello
et al. [15].

3.1.1. Lower bound L1
The lower bound L1 makes use of the lower bound L1BP for the one-dimensional

Bin Packing Problem (1BP) de$ned in the following. 1BP is the problem of packing
a set S of items into the minimum number of bins of capacity C, where each item
j∈ S has a weight cj. A valid lower bound L1BP to 1BP can be computed according
the following theorem.
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Theorem 1. Given any integer p, such that 16p6 1
2 C, let S1={j∈ S: cj ¿C−p},

S2 = {j∈ S: 1
2 C¡cj6C −p} and S3 = {j∈ S: p6 cj6 1

2 C}. A valid lower bound
on the optimal 1BP solution value is

L1BP(S; C) = max
16p6(1=2)C

{max{L�(p); L�(p)}}; (2)

where

L�(p) = |S1 ∪ S2|+max

{
0;

⌈∑
j∈S3 cj +

∑
j∈S2 cj

C
− |S2|

⌉}
; (3)

L�(p) = |S1 ∪ S2|+max


0;



|S3| −

∑
j∈S2

⌊
C − cj

p

⌋
⌊
C
p

⌋




 : (4)

If the items are sorted according to decreasing weights, L1BP(S; C) can be computed
in O(|S|2) time.

Lower bound L1 is based on the following theorem.

Theorem 2. Let JWH = {j∈ J : wj ¿ 1
2 W and hj ¿ 1

2 H}. A valid lower bound LWH
1

for problem 3BP|O|F is obtained by computing the lower bound L1BP(S; C) for the
one-dimensional bin packing problem 1BP-WH where items of S = JWH of weight
cj = dj; j∈ S, have to be packed into bins of capacity C = D.

Similar lower bound LHD1 is obtained by replacing in JWH and 1BP-WH the width
with the depth, i.e., W with D and wj with dj. While, lower bound LWD

1 is obtained
by replacing in JWH and 1BP-WH the height with the depth, i.e., H with D and hj
with dj. Thus, the overall lower bound can be computed in O(n2) time as

L1 = max{LWH
1 ; LHD1 ; LWD

1 }: (5)

Martello et al. have shown that no dominance relation exists between L0 and L1 and
that the worstcase performance of L1 can be arbitrarily bad.

3.1.2. Lower bound L2
The lower bound L2 explicitly takes into account the three dimensions of the items

and dominates L1. However, L2 makes use of LWH
1 ; LHD1 and LWD

1 .

Theorem 3. Given any pair of integers (p; q), such that 16p6 1
2 W and 16 q

6 1
2 H , let

K1(p; q) = {j∈ J : wj ¿W − p and hj ¿H − q};
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K2(p; q) = {j∈ J \ K1(p; q): wj ¿ 1
2 W and hj ¿ 1

2 H};
K3(p; q) = {j∈ J \ (K1(p; q) ∪ K2(p; q)): wj¿p and hj¿ q}: (6)

A valid lower bound on the optimal 3BP|O|F solution value is

LWH
2 = LWH

1 + max
16p6(1=2)W
16q6(1=2)H


max


0;




∑
j∈K2∪K3

vj +
∑
j∈K1

djWH

V
− LWH

1






 :

(7)

The lower bound LWH
2 can be computed in O(n2) time.

It is clear that the above results immediately produce two similar lower bounds LHD2
and LWD

2 . Lower bound LHD2 is obtained by replacing in (6) and (7) W with D; wj

with dj and LWH
1 with LHD1 . While, LWD

2 is obtained by replacing in (6) and (7) H with
D; hj with dj and LWH

1 with LWD
1 . Thus, the overall lower bound can be computed in

O(n2) time as

L2 = max{LWH
2 ; LHD2 ; LWD

2 }: (8)

Martello et al. have shown that L2 dominates both L0 and L1. Therefore, the overall
lower bound is LMPV = L2.

3.2. The lower bound by Fekete and Schepers

Fekete and Schepers [9] have proposed a new lower bound for the 3BP|O|F, called
LFS, and have shown that LFS¿LMPV.

In computing the lower bound for the 3BP|O|F, Fekete and Schepers normalize the
item sizes as w̃j=wj=W , h̃j=hj=H and d̃j=dj=D; ∀j∈ J , and set (W;H;D)=(1; 1; 1).
Then lower bound LFS is obtained by computing the continuous lower bound L0 (see
Section 2.2) using the volumes of the items transformed by means of the following
three dual feasible functions.
Dual feasible function 1: Let k ∈N. Then u(k)(x) = x, if (k + 1)x∈Z, and

u(k)(x) = 
(k + 1)x� 1
k otherwise.

Dual feasible function 2: Let $∈ [0; 12 ]. Then U ($)(x) = 1, if x¿ 1− $; U ($)(x) = x,
if $6 x6 1− $, and U ($)(x) = 0, if x¡ $.
Dual feasible function 3: Let $∈ (0; 12 ]. Then &($)(x) = 1 − 
(1 − x)$−1�=
$−1�, if

x¿ 1
2 ; &($)(x) = 1=
$−1�, if $6 x6 1

2 , and &($)(x) = 0, if x¡ $.
The lower bound LFS is given by the following theorem.

Theorem 4. Let �; �∈ (0; 12 ]. Let

v(1)(�)j = u(1)(w̃j)× u(1)(h̃j)× U (�)(d̃j);
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v(2)(�)j = u(1)(w̃j)× U (�)(h̃j)× u(1)(d̃j);

v(3)(�)j = U (�)(w̃j)× u(1)(h̃j)× u(1)(d̃j);

v(4)(�)j = u(1)(w̃j)× u(1)(h̃j)× &(�)(d̃j);

v(5)(�)j = u(1)(w̃j)× &(�)(h̃j)× u(1)(d̃j);

v(6)(�)j = &(�)(w̃j)× u(1)(h̃j)× u(1)(d̃j);

v(7)(�;�)j = U (�)(w̃j)× U (�)(h̃j)× d̃j;

v(8)(�;�)j = U (�)(w̃j)× h̃j × U (�)(d̃j);

v(9)(�;�)j = w̃j × U (�)(h̃j)× U (�)(d̃j): (9)

A valid lower bound on the optimal 3BP|O|F solution value is

LFS = max




max
k∈{1;:::;6}
0¡�61=2





∑
j∈J

v(k)(�)j




 max

k∈{7;:::;9}
0¡�61=2;
0¡�61=2





∑
j∈J

v(k)(�;�)j









:

(10)

Moreover, LFS dominates the lower bound LMPV.

4. New lower bounds for the 3BP|O|F

In this section, we introduce the new lower bounds Lnew1 and Lnew2 for the 3BP|O|F.

4.1. Lower bound Lnew1

The new lower bound Lnew1 takes into account the three dimensions of the items and
it is based on the following observations.
Given a triplet of integers (p; q; r), such that 16p6 1

2 W; 16 q6 1
2 H and 16 r

6 1
2 D, let

IW1 (p) = {j∈ J : wj ¿W − p}; IW2 (p) = {j∈ J : p6wj6W − p};
IH1 (q) = {j∈ J : hj ¿H − q}; IH2 (q) = {j∈ J : q6 hj6H − q};
ID1 (r) = {j∈ J : dj ¿D − r}; ID2 (r) = {j∈ J : r6dj6D − r}: (11)
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Note that for every triplet of integers (p; q; r), such that 16p6 1
2 W; 16 q6 1

2 H and
16 r6 1

2 D, every item of I1(p; q; r)=IW1 (p)∩IH1 (q)∩ID1 (r) requires a bin. Therefore,
|I1(p; q; r)| is a valid lower bound on the optimal 3BP|O|F solution. Furthermore,
this lower bound can be strengthened by observing that items of I1(p; q; r) cannot
be packed together with items of I2(p; q; r) = I(p; q; r) \ I1(p; q; r), where I(p; q; r) =
{j∈ J : wj¿p; hj¿ q; dj¿ r}. Hence, we can improve the lower bound by adding to
|I1(p; q; r)| a lower bound to the number of bins for packing items I2(p; q; r).

In the following we describe two di4erent lower bounds, called L′1(p; q; r) and
L′′1 (p; q; r), to the minimum number of bins required for packing items I(p; q; r).
L′1(p; q; r) is based on the following observations. Every item j∈ IW1 (p) cannot be

packed side by side with any item of I(p; q; r), therefore the bin volume at its left-
and right-hand sides cannot be used. Hence, every item j∈ IW1 (p), once placed in a
bin, occupies at least a volume equal to Whjdj. Similar considerations can be done
for the items of IH1 (q) and ID1 (r). Therefore, for each j∈ I(p; q; r), an updated volume
v′j(p; q; r) can be computed as follows:

v′j(p; q; r) = w′
j(p)h

′
j(q)d

′
j(r); (12)

where

w′
j(k) =

{
W; j∈ IW1 (p);

wj otherwise;
h′j(k) =

{
H; j∈ IH1 (p);

hj otherwise;

d′
j(k) =

{
D; j∈ ID1 (p);

dj otherwise:

Hence, L′1(p; q; r) can be computed as a valid lower bound of the one-dimensional bin
packing problem 1BP(p; q; r) where items of S = I(p; q; r) of weight cj = v′j(p; q; r)
have to be packed into bins of capacity C = V .
Lower bound L′′1 (p; q; r) is based on the following observations. Given the three sub-

sets IWH (p; q; r)= IW1 (p)∩ IH1 (q)∩ I2(p; q; r), IWD(p; q; r)= IW1 (p)∩ ID1 (r)∩ I2(p; q; r)
and IHD(p; q; r) = IH1 (q) ∩ ID1 (r) ∩ I2(p; q; r), two items contained in two of these sets
cannot be packed in the same bin. For example for every pair of items j1 ∈ IWH (p; q; r)
and j2 ∈ IHD(p; q; r) we have wj1 + wj2 ¿W; hj1 + hj2 ¿H and dj1 + dj2 ¿D. Fur-
thermore, items of IWH (p; q; r) can be only packed one behind the other as items
of IWD(p; q; r) can be only packed one over the other and items of IHD(p; q; r) can
be only packed side by side. Therefore, L′′1 (p; q; r) can be computed as follows:
L′′1 (p; q; r) = |I1(p; q; r)|+ MLWH

1 (p; q; r) + MLWD
1 (p; q; r) + MLHD1 (p; q; r), where:

• MLWH
1 (p; q; r) is a valid lower bound to the 1BP de$ned by setting C = D; S =

IWH (p; q; r) and cj = dj, for each item j∈ S.
• MLWD

1 (p; q; r) is a valid lower bound to the 1BP de$ned by setting C = H; S =
IWD(p; q; r) and cj = hj, for each item j∈ S.

• MLHD1 (p; q; r) is a valid lower bound to the 1BP de$ned by setting C = W; S =
IHD(p; q; r) and cj = wj, for each item j∈ S.
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The lower bound Lnew1 is computed as follows:

Lnew1 = max
16p6(1=2)W; 16q6(1=2)H

16r6(1=2)D

{max{L′1(p; q; r); L′′1 (p; q; r)}}: (13)

Note that in expression (13) it is suNcient to consider only the values of p; q and r
corresponding to distinct values of wj6W=2; hj6H=2 and dj6D=2, respectively (see
also Martello et al. [15]). Moreover, the set of values {p}, {q} and {r} to consider in
evaluating L′1(p; q; r) can be further reduced by the following observation. If we have
two values p and p′ such that w′

j(p)6w′
j(p

′), for every item j∈ J , then value p can
be discarded. Similarly, we can reduce the value sets {q} and {r}. It is easy to show
that each of the resulting set of values cannot contain more than n=2 distinct values.
Concerning L′′1 (p; q; r), it is suNcient to consider the values p∈{wj6W=2: j∈ IH1 ( 12 )∩
ID1 (

1
2 )}, q∈{hj6H=2: j∈ IW1 ( 12 ) ∩ ID1 (

1
2 )} and r ∈{dj6D=2: j∈ IW1 ( 12 ) ∩ IH1 ( 12 )}.

The lower bound Lnew1 can be computed in O(n3b) time, where b is the complexity
of the algorithm used for computing a valid lower bound of the one-dimensional bin
packing problem. In case the lower bound L1BP(S; C) is used, then the overall com-
plexity is O(n5), while if the continuous lower bound is used then the complexity is
O(n4). The following theorem shows that the lower bound Lnew1 dominates LMPV.

Theorem 5. If lower bound Lnew1 is computed using L1BP(S; C) then Lnew1 ¿LMPV.

Proof. By means of the following properties: (i) a + max{b; c} = max{a + b; a + c},
if a; b and c are real; (ii) a+ �b�= �a+ b�, if a is an integer and b is a real; lower
bound LWH

2 given by expression (7) can be rewritten as

LWH
2 = max{LWH

1 ; L̂WH
2 }; (14)

where

L̂WH
2 = max

16p6( 12 )W

16q6( 12 )H






∑
j∈K2(p;q)∪K3(p;q)

vj +
∑

j∈K1(p;q)
djWH

V




 : (15)

In order to show that Lnew1 ¿LWH
2 , we prove that Lnew1 ¿LWH

1 and Lnew1 ¿ L̂WH
2 .

Consider L′1(p; q; r) for the case where p= 1
2 W , q= 1

2 H and r=1. L′1(W=2; H=2; 1)
is computed using L1BP(S; C) for solving the one-dimensional bin packing problem
1BP(W=2; H=2; 1) where items of S = I(W=2; H=2; 1) of weight cj =WHdj, if j∈ JWH ,
and cj = v′j , if j∈ S \ JWH , have to be packed into a bins of capacity C = WHD.
If we ignore the item of S \ JWH , then the remaining problem is equivalent to the
one-dimensional bin packing problem where the items of weight cj=dj; j∈ JWH , have
to be packed into bins of capacity C = D, which corresponds to problem 1BP-WH.
Since problem 1BP(W=2; H=2; 1) also considers the items belonging to S \ JWH , then
we have Lnew1 ¿L′1(W=2; H=2; 1)¿LWH

1 .
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It is easy to see that L̂WH
2 represents the maximum of the continuous lower bounds

for the one-dimensional bin packing problems, de$ned for every pair (p; q) such that
16p6 1

2 W and 16 q6 1
2 H , where items of weight cj = WHdj6 v′j(p; q; 1), if

j∈K1(p; q), and cj = vj6 v′j(p; q; 1), if j∈K2(p; q)∪K3(p; q), have to be packed into
bins of capacity C = V . Since, for every pair (p; q); I(p; q; 1) =K1(p; q)∪K2(p; q)∪
K3(p; q) and cj6 v′j(p; q; 1), for every j∈ I(p; q; 1), then Lnew1 ¿max{L′1(p; q; 1):
16p6 1

2 W; 16 q6 1
2 H}¿ L̂WH

2 .
Therefore, we have that Lnew1 ¿LWH

2 and in a similar way we can show that Lnew1
¿LWD

2 and Lnew1 ¿LHD2 . Hence, we have Lnew1 ¿LMPV = max{LWH
2 ; LWD

2 ; LHD2 } which
completes the proof.

Note that in the proof of Theorem 5 it was suNcient to consider only the component
L′1(p; q; r) of lower bound Lnew1 .

4.2. Lower bound Lnew2

The lower bound Lnew2 is an extension to the 3BP|O|F of the lower bound proposed
by Martello and Vigo [16] for the 2BP|O|F. It explicitly takes into account the three
dimensions of the items as well as Lnew1 , described in Sections 4.1. Between Lnew1 and
Lnew2 no dominance relations hold.

Theorem 6. Given a triplet of integers (p; q; r), such that 16p6 1
2 W , 16 q6 1

2 H
and 16 r6 1

2 D, a valid lower bound on the optimal 3BP|O|F solution is

Lnew2 = max
16p6(1=2)W;16q6(1=2)H

16r6(1=2)D

{⌈ ∑
j∈J )(j; p; q; r)


W=p�
H=q�
D=r�

⌉}
; (16)

where

)(j; p; q; r) = *(p;wj;W )× *(q; hj; H)× *(r; dj; D) (17)

and

*(s; z; Z) =




⌊
Z
s

⌋
−
⌊
Z − z
s

⌋
if z¿

Z
2
;

⌊ z
s

⌋
if z6

Z
2
:

(18)

Proof. Note that 
W=p�
H=q�
D=r� represents the maximum number of elements of
size equal to (p; q; r) that can be packed into a bin. For each item j∈ J , )(j; p; q; r)
represents a lower bound on the number of (p; q; r) elements covered by item j (see
the four two-dimensional examples reported in Fig. 1). Hence,

∑
j∈J )(j; p; q; r) repre-

sents a lower bound on the number of (p; q; r) elements required for placing all items
of J .
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Fig. 1. Four two-dimensional examples: (a) wj ¿W=2 and hj ¿H=2; (b) p6wj6W=2 and hj ¿H=2; (c)
wj ¿W=2 and q6 hj6H=2; (d) p6wj6W=2 and q6 hj6H=2. The lower bound on the number of
(p; q) elements covered by item j is given by *(p; wj; W )× *(q; hj; H).

In order to reduce the computational complexity of Lnew2 we can reduce the number
of triplets (p; q; r) used in expression (16) considering only the values of p; q and
r corresponding to distinct values of wj6W=2; hj6H=2 and dj6D=2, respectively.
Hence, the lower bound Lnew2 can be computed in O(n4) time. Moreover, the set of
values {p}; {q} and {r} can be further reduced by observing that if there are two
values p and p′ such that *(p;wj;W )
W=p�−16 *(p′; wj;W )
W=p′�−1, for every item
j∈ J , then value p can be discarded. Similarly, we can reduce the value sets {q}
and {r}.

4.3. New lower bound LB for the 3BP|O|F

Since no dominance relations hold between Lnew1 and Lnew2 , but Lnew1 dominates L2,
the overall lower bound LB is computed as LB = max{Lnew1 ; Lnew2 }.

Theorem 7. If lower bounds L′1(p; q; r) and L′′1 (p; q; r) used in expression (13) for
computing Lnew1 is computed using the continuous lower bound for the 1BP, then
LB¿LFS.

Proof. Among the three dual feasible functions proposed by Fekete and Schepers [9]
the following relationships hold: u(1) = U (1=2) and u(1) = &(1=2). As U (0)(x) = x, then



M.A. Boschetti / Discrete Applied Mathematics 140 (2004) 241–258 251

we can rewrite expressions (9) as follows:

v(1)(�)j = U (1=2)(w̃j)× U (1=2)(h̃j)× U (�)(d̃j);

v(2)(�)j = U (1=2)(w̃j)× U (�)(h̃j)× U (1=2)(d̃j);

v(3)(�)j = U (�)(w̃j)× U (1=2)(h̃j)× U (1=2)(d̃j);

v(4)(�)j = &(1=2)(w̃j)× &(1=2)(h̃j)× &(�)(d̃j);

v(5)(�)j = &(1=2)(w̃j)× &(�)(h̃j)× &(1=2)(d̃j);

v(6)(�)j = &(�)(w̃j)× &(1=2)(h̃j)× &(1=2)(d̃j);

v(7)(�;�)j = U (�)(w̃j)× U (�)(h̃j)× U (0)(d̃j);

v(8)(�;�)j = U (�)(w̃j)× U (0)(h̃j)× U (�)(d̃j);

v(9)(�;�)j = U (0)(w̃j)× U (�)(h̃j)× U (�)(d̃j); (19)

where w̃j = wj=W; h̃j = hj=H and d̃j = dj=D; ∀j∈ J .
Part 1: De$ne v1j (�; �; -) = U (�)(w̃j) × U (�)(h̃j) × U (-)(d̃j), where �; �; -∈ [0; 1=2].

As U ($)(x) is a dual feasible function, then we have the following lower bound LP1:

LP1 = max
06�61=2;06�61=2

06-61=2





∑
j∈J

v1j (�; �; -)




 : (20)

It is clear that

LP1¿max




max
k∈{1;2;3}
0¡�61=2





∑
j∈J

v(k)(�)j




 ; max

k∈{7;8;9}
0¡�61=2
0¡�61=2





∑
j∈J

v(k)(�;�)j








: (21)

Consider the set I(p; q; r)= {j∈ J : wj¿p; hj¿ q; dj¿ r} de$ned in Section 4.1. Let
p = �W; q = �H and r = -D and de$ne v′j(p; q; r) according to expression (12) for
every j∈ I(p; q; r) and v′j(p; q; r) = 0 otherwise. From the de$nition of U ($)(x) is easy
to see that v1j (�; �; -)=v′j(p; q; r)=V , for every j∈ I(p; q; r), and v1j (�; �; -)=0 otherwise.
Therefore, LP1 can be rewritten as follows:

LP1 = max
16p6(1=2)W;16q6(1=2)H

16r6(1=2)D






∑
j∈I(p;q;r)

v′j(p; q; r)
V




 : (22)



252 M.A. Boschetti / Discrete Applied Mathematics 140 (2004) 241–258

Note that the term in the maximization of expression (22) is the continuous lower
bound of problem 1BP(p; q; r) used in Section 4.1 for computing L′1(p; q; r). Hence
Lnew1 ¿L′1(p; q; r)¿LP1.
Part 2: De$ne v2j (�; �; -)=&(�)(w̃j)×&(�)(h̃j)×&(-)(d̃j), where �; �; -∈ (0; 12 ]. Since

&($)(x) is a dual feasible function, then we have the following lower bound LP2:

LP2 = max
0¡�6 1

2 ;0¡�6 1
2

0¡-6 1
2





∑
j∈J

v2j (�; �; -)




¿ max

k∈{4;5;6}
0¡�6 1

2





∑
j∈J

v(k)(�)j




 : (23)

De$ne x = z=Z and $ = s=Z , then we have &($)(x) = 
Z=s� − 
(Z − z)=s�=
Z=s�, if
z¿Z=2; &($)(x) = 1=
Z=s�, if s6 z6Z=2 and &($)(x) = 0, otherwise. Therefore, LP2
can be rewritten as follows:

LP2 = max
16p6(1=2)W;16q6(1=2)H

16r6(1=2)D

{⌈∑
j∈J )′(j; p; q; r)


W=p�
H=q�
D=r�

⌉}
; (24)

where

)′(j; p; q; r) = *′(p;wj;W )× *′(q; hj; H)× *′(r; dj; D) (25)

and

*′(s; z; Z) =




⌊
Z
s

⌋
−
⌊
Z − z
s

⌋
if z¿

Z
2
;

1 if s6 z6
Z
2
;

0 otherwise:

(26)

If we consider the lower bound Lnew2 , de$ned in Section 4.2, it is easy to show that
*′(s; z; Z)6 *(s; z; Z) and, consequently, Lnew2 ¿LP2.

Hence, we have LB = max{Lnew1 ; Lnew2 }¿max{LP1; LP2}¿LFS which completes the
proof.

5. Lower bounds for the 3BP|M|F

For the case where items can be rotated by 90◦, we can allocate the item into the bin
in six di4erent orientations (see the example reported in Fig. 2). Let R={0; 1; 2; 3; 4; 5}
be the index set of the six rotations. For each rotation k ∈R we denote the size of
each item j∈ J with (ŵj(k); ĥj(k); d̂j(k)) where:

ŵj(k) =




wj; k ∈{0; 1};
hj; k ∈{2; 3};
dj; k ∈{4; 5};

ĥj(k) =




wj; k ∈{2; 5};
hj; k ∈{0; 4};
dj; k ∈{1; 3};
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k = 0 k = 1 k = 2

k = 3 k = 4 k = 5

Fig. 2. The six di4erent rotations for item j of size (wj; hj; dj) = (3; 2; 1).

d̂j(k) =




wj; k ∈{3; 4};
hj; k ∈{1; 5};
dj; k ∈{0; 2}:

We denote with Rj ⊆ R the subset of feasible rotations allowed of the item j∈ J ; that
is Rj = {k ∈R: ŵj(k)6W and ĥj(k)6H and d̂j(k)6D}.
Note that in practical application only a subset of Rj can be allowed for item j.

In this case, we assume that Rj is speci$ed in input as required by the particular
application. If for every item j∈ J the subset Rj contains all the feasible rotations,
then problem 3BP|M|F corresponds to problem 3BP|R|F.

The continuous lower bound L0 can be also used for the 3BP|M|F as it involves
only item and bin volumes.

5.1. Lower bound LM1

The lower bounds described in Section 4 can be used for the 3BP|M|F once the item
sizes wj; hj and dj are replaced with the following modi$ed sizes: Mwj = min{ŵj(k):
k ∈Rj}; Mhj =min{ĥj(k): k ∈Rj} and Mdj =min{d̂j(k): k ∈Rj}, while the item volume
vj; j∈ J , does not need to be modi$ed. However, lower bound L′(p; q; r),
described in Section 4.1, can be improved if in de$ning problem 1BP(p; q; r) we
set cj =max{vj; v′j(p; q; r)}, for every j∈ S = I(p; q; r).
We denote with LM1 the lower bound obtained as described above.
In the following we describe lower bound LM2 which explicitly takes into account

both dimensions and the speci$ed feasible rotations Rj of each item j.
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5.2. Lower bound LM2

Lower bound LM2 is de$ned by the following theorem.

Theorem 8. A valid lower bound on the optimal solution value of the 3BP|M|F is

LM2 = max
16p6(1=2)W;16q6(1=2)H

16r6(1=2)D

{⌈∑
j∈J )′(j; p; q; r)


W=p�
H=q�
D=r�

⌉}
; (27)

where )′(j; p; q; r) = min{*(p; ŵj(k); W )× *(q; ĥj(k); H)× *(r; d̂j(k); D): k ∈Rj} and
*(s; z; Z) is de&ned by expression (18).
Lower bound LM2 can be computed in O(n4) time.

Proof. Note that 
W=p�
H=q�
D=r� represents the maximum number of elements of
size equal to (p; q; r) that can be packed into a bin. For each item j∈ J; )(j; p; q; r)
represents a lower bound on the number of (p; q; r) elements covered by item j. Hence,∑

j∈J )(j; p; q; r) represents a lower bound on the number of (p; q; r) elements required
for placing all items of J .

5.3. Overall lower bound LMB for the 3BP|M|F

Lower bound LMB is maximum between LM1 , computed using the modi$ed item sizes
( Mwj; Mhj; Mdj); j∈ J , and LM2 given by expression (27), that is LMB = max{LM1 ; LM2 }.

6. Computational results

The algorithms presented in this paper have been implemented in C and run on
a Pentium III Intel 933 MHz. We have considered the eight classes of test problems
proposed by Martello et al. [15].
The $rst $ve classes of randomly generated problems that are generalizations of the

instances considered by Martello and Vigo [16] for the two-dimensional bin packing
problem (2BP). The bin size is (W;H;D)= (100; 100; 100), and $ve types of items are
considered, as described in Table 1. Each class k ∈{1; : : : ; 5} of instances is obtained
by including items of type k with probability 60% and items of the other four types
with probability 10% each.
The last three classes of randomly generated problems are generalizations of the

instances presented by Berkey and Wang [1] for the 2BP and are de$ned as follows:

• Class 6: bin size (W;H;D)=(10; 10; 10); items sizes (wj; hj; dj) are uniformly random
generated in [1; 10];

• Class 7: bin size (W;H;D)=(40; 40; 40); items sizes (wj; hj; dj) are uniformly random
generated in [1; 35];
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Table 1
Item generation for Classes 1–5. For each type of item, the dimensions are uniformly random generated in
the given range.

Type wj hj dj

1 [1; 12W ] [ 23H;H ] [ 23D;D]

2 [ 23W;W ] [1; 12H ] [ 23D;D]

3 [ 23W;W ] [ 23H;H ] [1; 12D]

4 [ 12W;W ] [ 12H;H ] [ 12D;D]

5 [1; 12W ] [1; 12H ] [1; 12D]

• Class 8: bin size (W;H;D) = (100; 100; 100); items sizes (wj; hj; dj) are uniformly
random generated in [1; 100].

The test problem instances have been generated using the code available on website
“http://www.diku.dk/∼pisinger/codes.html” and each class contains 10 di4erent prob-
lems.
Table 2 shows the results when items cannot be rotated. The computational re-

sults obtained by the new lower bound LB are compared with the ones obtained by
the lower bound LMPV proposed by Martello et al. [15] and our implementation of the
lower bound LFS proposed by Fekete and Schepers [8]. Moreover, Table 2 shows the
results obtained by the exact method proposed by Martello et al. [15] (the code is
available on the website “http://www.diku.dk/∼pisinger/codes.html”) using their lower
bound LMPV, our implementation of LFS and the new lower bound LB within the time
limit of 300 s.
Let UB be the best upper bound known. In Table 2 for each test problem we report:

GMPV; GFS; GB: average percentage ratio between the lower bound value ob-
tained by LMPV; LFS and LB, respectively, and the best upper

bound known, i.e., GMPV=
UB− LMPV

UB
×100; GFS=

UB− LFS
UB

×
100 and GB =

UB− LB
UB

× 100;

TMPV; TFS; TB: average computing time in Pentium III Intel 933 MHz CPU s,
computed over all the solved instances, required by the orig-
inal exact method of Martello et al. [15] using lower bounds
LMPV; LFS and LB, respectively;

NMPV; NFS; NB: average number of tree nodes, computed over all the solved
instances, required by the original exact method of Martello
et al. [15] using lower bounds LMPV; LFS and LB, respectively;

OMPV; OFS; OB: number of instances solved to optimality within the time limit
of 300 s by the exact method of Martello et al. [15] using lower
bounds LMPV; LFS and LB, respectively.

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
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Table 2
Lower bounds for the 3BP|O|F.

Problem MPV 2000 FS ’97 New lower bound

Class n GMPV TMPV NMPV OMPV GFS TFS NFS OFS GB TB NB OB

I 20 13.62 0.05 154.9 10 6.52 0.04 110.9 10 3.43 0.03 37.5 10
40 6.50 21.17 1266415.3 9 4.67 34.69 1264027.7 9 2.22 15.35 139873.9 10
60 8.95 20.11 205616.0 1 7.59 57.56 205616.0 1 7.01 41.08 205616.0 1
80 7.97 — — 0 5.21 — — 0 4.68 125.48 222481.5 2
100 8.39 — — 0 6.63 — — 0 4.74 1.79 1870.0 2

II 20 11.90 0.03 958.9 10 9.90 0.05 952.2 10 4.03 0.05 531.5 10
40 9.27 8.08 103450.1 8 5.78 14.17 71922.9 8 3.56 6.23 54171.6 8
60 8.99 69.32 8689786.0 1 7.10 36.25 4346047.5 2 5.14 0.44 1185.0 2
80 8.59 — — 0 5.68 13.89 81.0 1 5.20 7.14 81.0 2
100 8.74 — — 0 6.47 — — 0 5.68 0.60 101.0 1

III 20 17.29 0.02 112.1 10 10.52 0.03 39.3 10 7.10 0.02 31.0 10
40 10.10 77.12 5440608.1 8 6.11 76.21 4948050.6 7 5.11 53.11 3776889.9 8
60 8.54 — — 0 4.56 97.84 104608.0 3 3.72 51.34 78471.3 4
80 7.85 0.99 81.0 1 6.45 1.10 81.0 1 5.55 1.21 81.0 1
100 9.19 — — 0 7.34 — — 0 6.65 — — 0

IV 20 0.77 0.01 1.9 10 0.77 0.01 1.9 10 0.00 0.01 0.0 10
40 2.10 0.05 572.0 10 1.28 0.05 462.6 10 0.00 0.05 0.0 10
60 2.02 5.24 333185.7 9 0.87 0.20 3619.7 9 0.00 0.13 40.6 10
80 2.65 1.29 41969.5 4 1.02 0.35 1899.5 6 0.00 0.24 0.0 10
100 2.39 0.38 97.0 1 0.68 0.40 49.2 6 0.00 0.36 29.5 10

V 20 15.00 0.13 5.2 10 13.33 0.13 5.2 10 0.00 0.12 1.4 10
40 21.83 0.36 16.0 4 18.58 0.35 16.0 4 10.42 1.58 22.2 5
60 26.00 2.63 122.0 1 23.64 2.80 122.0 1 16.37 1.97 122.0 1
80 22.83 — — 0 22.11 — — 0 15.56 — — 0
100 24.15 — — 0 22.56 — — 0 18.23 — — 0

VI 20 14.10 0.09 12.9 10 12.43 0.09 12.3 10 5.10 0.09 7.5 10
40 7.33 9.04 3294.9 10 3.50 8.93 3274.1 10 3.50 8.29 3274.1 10
60 10.23 60.69 131016.0 7 5.60 48.53 127529.7 7 3.98 36.70 111546.9 8
80 10.27 8.68 168358.8 4 5.43 9.82 168153.3 4 4.31 8.66 163672.0 4
100 9.35 57.62 3503294.5 2 4.73 59.24 3153301.0 2 4.73 53.06 3153301.0 2

VII 20 14.17 0.11 8.3 10 8.33 0.11 7.2 10 5.00 0.11 6.7 10
40 30.27 0.22 54.0 2 25.91 0.28 54.0 2 24.48 0.22 54.0 2
60 28.65 — — 0 25.63 — — 0 22.81 — — 0
80 26.94 — — 0 23.82 — — 0 21.39 — — 0
100 26.81 — — 0 24.34 — — 0 22.53 — — 0

VIII 20 13.17 0.09 6.9 10 11.50 0.09 6.9 10 4.17 0.09 4.2 10
40 12.92 18.10 229.4 8 12.92 18.25 229.4 8 6.13 17.46 208.1 8
60 13.15 72.60 27518.0 5 11.49 73.76 27518.0 5 9.94 69.56 27518.0 5
80 18.29 38.61 7953.0 2 16.20 38.78 7953.0 2 12.58 36.44 7953.0 2
100 14.74 118.89 238339.0 2 13.66 117.69 238339.0 2 9.78 110.68 84240.5 2
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We do not report the computing time of the lower bounds as they are negligible.
Table 2 shows that GMPV¿GFS¿GB, i.e., LMPV6LFS6LB, thus con$rming the

better quality of the new lower bound LB. Not reported in Table 2, lower bound LB for
234 instances out of 400 improves LMPV of Martello et al. [15] and for 118 instances
out of 400 improves our implementation of LFS of Fekete and Schepers [9].

Table 2 also shows that the exact method of Martello et al. [15] using the new
lower bound LB is able to solve to optimality 31 new instances no solved by the
same exact method using LMPV. While, the exact method using LFS is able to solve
to optimality only 12 new instances, but it is not able to solve to optimality one
instance solved by Martello et al. Moreover, columns TMPV; TFS and TB show that
the computational performance of the exact method using the new lower bound LB
is on average better than the computational performance of the exact method using
LMPV and LFS. Therefore, the larger theoretical computational complexity of LB with
respect to LMPV and LFS is repaid by the advantages obtained by having a better lower
bound; i.e., a smaller number of tree nodes required to reach the optimal solution (see
columns NMPV; NFS and NB). While, even if LMPV and LFS have the same theoretical
computational complexity, i.e., O(n2), and LFS dominates LMPV, the lower bound LFS
is more time consuming than LMPV but it is not able to reduce enough the number of
tree nodes.
In our computational experiments we have also tested the new lower bound LB when

the continuous lower bound for the 1BP is used, instead of L1BP(S; C), so as to achieve
the O(n4) complexity. The results obtained are similar to the ones reported in Table 2
for the version of complexity O(n5) but they are always inferior.

7. Conclusions

In this paper, we propose new lower bounds for the three-dimensional $nite bin-
packing problem where items have a $xed orientation (3BP|O|F) and for the more
general case where for each item the subset of rotations allowed is speci$ed (3BP|M|F).
We show that the new lower bound for the 3BP|O|F dominates all other lower

bounds presented in the literature so far.
The computational results show the e4ectiveness of the new lower bound LB for the

3BP|O|F and indicate that the exact algorithm proposed by Martello et al. [15] using
LB solves to optimality more instances and requires on average less computing time
than the exact algorithm using LMPV and LFS.

In this paper, no results on the worst-case performance ratio of the new lower
bound LB are reported. Therefore, further research is required to give an answer to this
important question. In the literature, the worstcase performance ratio is de$ned only
for the well-known continuous lower bound L0 (see Martello et al. [15]).
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