
Available online at www.sciencedirect.com
www.elsevier.com/locate/ejor

European Journal of Operational Research 195 (2009) 744–760
TS2PACK: A two-level tabu search for the three-dimensional
bin packing problem

Teodor Gabriel Crainic a, Guido Perboli b,*, Roberto Tadei b

a Département de management et technologie, École des sciences de la gestion, U.Q.A.M. and CIRRELT, Montreal, Canada
b Control and Computer Engineering Department, Politecnico di Torino, Torino, Italy

Received 13 January 2007; accepted 18 June 2007
Available online 22 November 2007
Abstract

Three-dimensional orthogonal bin packing is a problem NP-hard in the strong sense where a set of boxes must be orthogonally
packed into the minimum number of three-dimensional bins. We present a two-level tabu search for this problem. The first-level aims
to reduce the number of bins. The second optimizes the packing of the bins. This latter procedure is based on the Interval Graph rep-
resentation of the packing, proposed by Fekete and Schepers, which reduces the size of the search space. We also introduce a general
method to increase the size of the associated neighborhoods, and thus the quality of the search, without increasing the overall complexity
of the algorithm. Extensive computational results on benchmark problem instances show the effectiveness of the proposed approach,
obtaining better results compared to the existing ones.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Three-dimensional packing; Tabu search; Bin packing
1. Introduction

Given a set of rectangular-shaped items i 2 I , with sizes wi, li, and hi, and an unlimited number of containers of fixed
sizes W, L, and H, called bins, the three-dimensional orthogonal bin packing problem consists in orthogonally packing the
items into the minimum number of bins. We assume items cannot be rotated. According to the typology introduced by
Wäscher et al. [29], the problem can be characterized as the three-dimensional single bin-size bin packing problem (3D-
SBSBPP).

Multi-dimensional bin packing (BP) problems have been studied mainly in their 2D versions, the focus on problems in
higher dimensions, 3D versions in particular, being quite recent [24,9,25]. It is interesting to notice that most approaches
used to address two-dimensional packing problems cannot be extended to their three-dimensional counterparts or, in the
best case, that such an extension yields packing that underuses the volumes of the bins [24,23,25,19,21]. Methods specif-
ically designed for 3D problems must therefore be developed.

3D-SBSBPP is NP-hard in the strong sense. Meta-heuristics appear therefore as the methods of choice when large
instances must be addressed. Meta-heuristics proposed in the literature use a composite solution representation, which con-
siders simultaneously the assignments of items to the bins and the packing representation describing the positioning of
items inside the bins. This considerably reduces the flexibility and performance of the methods. In fact, in these cases
can be necessary to rewrite and adapt the overall heuristics every time a packing constraint changes. This paper addresses
this issue and proposes a flexible meta-heuristic that outperforms existing methods.
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.06.063

* Corresponding author. Tel.: +39 011 5647 097; fax: +39 011 5647 099.
E-mail addresses: theo@crt.umontreal.ca (T.G. Crainic), guido.perboli@polito.it (G. Perboli), roberto.tadei@polito.it (R. Tadei).

mailto:theo@crt.umontreal.ca
mailto:guido.perboli@polito.it
mailto:roberto.tadei@polito.it

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 745
The main contribution of the paper is the introduction of TS2PACK, a two-level heuristic aimed at solving 3D-
SBSBPP. TS2PACK separates the search for the optimal number of bins, related to the assignment of the items to the
bins (first-level heuristic), from the optimization of the accommodation of items within bins (second-level heuristic). This
results into a significantly more flexible procedure than existing heuristics. Thus, the accommodation heuristic can be
modified to take into account additional constraints or use a different solution representation without changing the
first-level heuristic.

One of the main challenges of multi-dimensional packing problems is efficiently verifying the feasibility of the packings,
i.e., given the items assigned to a container and their positions within the container according to a set of orthogonal axes,
the assignment is feasible if and only if the items of each pair do not overlap. The second-level heuristic uses an implicit
representation of a packing in a multi-dimensional environment following the graph-theoretical characterization developed
by Fekete and Schepers [10,11]. According to the literature (Section 2), it is the first time that this representation, which
reduces the size of the solution space of the accommodation heuristic, is applied within a meta-heuristic context.
TS2PACK also includes the k-chain-moves algorithm, a general method to increase the accuracy of a neighborhood. It
dynamically increases the size of a neighborhood without changing its computational complexity, introducing cycles of
changes inside the solution.

Extensive computational results on benchmark problem instances show that the TS2PACK meta-heuristic outperforms
other methods for solving 3D-SBSBPP. The experimental results also show that k-chain-moves and the graph-theoretical
characterization of the solution improve significantly the results of the TS2PACK heuristic both in quality and accuracy.

The paper is organized as follows. We recall the literature on solution methods for 3D-SBSBPP in Section 2. Section 3 is
dedicated to introducing the TS2PACK heuristic. Experimental results are discussed in Section 4.

2. Literature review

According to several papers and surveys (e.g., [25,19,21]), one of the main issues in building a solution of a multi-dimen-
sional packing problem is finding an efficient and accurate representation of placement of the items inside the container.
However, in the following, we will focus on the solution methods for 3D-SBSBPP, being available a recent review of the
packing representations in [7].

The first exact method to solve 3D-SBSBPP was proposed by Martello et al. [24]. It is a two-level Branch & Bound. The
first search tree assigns the items to the bins. For each node of the first-level search tree, they use a second Branch & Bound
to verify (prove) whether the items assigned to each bin can be actually packed into it. To perform this verification phase,
the authors consider that, given a set of items placed into a container, the resulting set of possible packing is dominated by
the packing where the items cannot be moved leftward, downwards or backwards. Furthermore, given a partial packing,
there is a limited number of points within the residual space of the container where we can accommodate a new item with-
out the new packing being dominated by another. These points, called Corner Points (CPs), are used by the authors to
reduce the search space of the second-level Branch & Bound. Martello, Pisinger and Vigo test their procedure on six sets
of instances with up to 200 items.

In the same paper, the authors derive the first lower bounds for 3D-SBSBPP. Their best bound considers the items with
width and height larger than fixed values p and q, respectively, and determines the subsets of items that, for geometric rea-
sons, cannot be placed side by side.

Fekete and Schepers [10,11] define an implicit representation of the packing by means of Interval Graphs (IGs), the
Packing Class (PC) representation. In their work, the authors consider the relative position of the boxes in a feasible pack-
ing and, from the projection of the items on each orthogonal axis, they define a graph describing the overlappings of the
items in the container. More formally, let GdðV ;EdÞ be the interval graph associated to the dth axis with a vertex associated
to each item i in the container and a non-oriented edge ði; jÞ between two items i and j if and only if their projections on axis
d overlap. The authors prove necessary conditions on the interval graphs to define a feasible packing. This characterization
is used by the authors to develop a two-level tree search. Their computational results, mainly limited to 2D problems, show
that their method outperforms previous methods. Unfortunately, up to now no comparison with the Branch & Bound by
Martello et al . [24] has been performed, even if the approach by Fekete and Schepers could be easily extended to
3D-SBSBPP.

A new class of lower bounds has been introduced by Fekete and Schepers [10]. The authors extend the use of dual fea-
sible functions, first introduced by Johnson [18], to two and three dimensional packing problems, including 3D-SBSBPP.

The most recent lower bound, proposed by Boschetti [5], introduces new dual feasible functions. The derived bound is
able to dominate both the bounds by Martello, Pisinger and Vigo and the ones by Fekete and Schepers.

A tabu search algorithm for the 2D-BP problem was developed by Lodi et al. [20]. This algorithm uses two simple con-
struction heuristics for packing the items into the bins. The tabu search algorithm only controls the movement of the items
between the bins. In [23], this tabu search approach was generalized to other variants of the BP problem, including the one
considered in this paper.

746 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
Faroe et al. [9] presented a Guided Local Search (GLS) heuristic algorithm for 3D-SBSBPP. Starting with an upper
bound on the number of bins obtained by a greedy heuristic, the algorithm iteratively decreases the number of bins, each
time searching for a feasible packing of the boxes using the GLS method. Up to now, this heuristic is the one that obtains
the best solutions for 3D-SBSBPP.

Different constructive algorithms have been developed for different versions of the 2D problem (see [21] for a survey).
Unfortunately, these approaches cannot be directly applied to the 3D case due to the growing complexity of the accom-
modation of the items. Two heuristics have been developed and tested for 3D-SBSBPP by Martello et al. in [24]. The first
algorithm, called S-Pack, is based on a layer building principle derived from shelf approaches used by several authors for
2D-BP (e.g., [6,4]). The second approach, called T -MPV , repeatedly fills a bin after the other by means of a Branch &
Bound algorithm for the single container filling developed by the authors in the same paper.

Lodi et al. [22] presented a new heuristic for 3D-SBSBPP, called Height first – Area second (HA). The heuristic chooses
the best of two possible solutions. In the first one, the items are partitioned by height into clusters and a series of layers are
obtained from each cluster. Then, the layers are packed into the bins through the Branch & Bound by Martello and Toth
for the 1D-BP problem. The second solution is obtained resorting the items by non-increasing area of their base and new
layers are built. As in the first solution, the layers are packed in the bins solving a 1D-BP problem. According to the results,
the HA heuristic is the constructive procedure that obtains the best results on benchmark tests.

Crainic et al. [7] defined the Extreme Points, an extension of the Corner Points able to better exploit the container’s
volume. The basic idea is to efficiently find the points where an item can be added to an existing packing. The Extreme
Points are used by the authors to design new constructive heuristics based on the first fit decreasing and the best fit decreas-
ing heuristics for the mono-dimensional BP problem. Computational results show that they outperform all the other con-
structive heuristics for both 2D-SBSBPP and 3D-SBSBPP. Moreover, the procedure obtains, in negligible time, results
that are better than those of the Branch & Bound by Martello et al. [24] and comparable to those of existing meta-
heuristics.

3. TS2PACK : A two-stage tabu search heuristic for 3D-SBSBPP

The main difference between mono-dimensional and multi-dimensional packing problems is the verification of the feasi-
bility of the packing, i.e. given a set of items IC assigned to a container C, determining whether an accommodation of the items
inside the container exists such that the items do not overlap and the packing is compatible with the container size. Usually,
both in exact and heuristic procedures, the feasibility of the packing and the evaluation of the objective function of the prob-
lem are mixed. This is particularly true for meta-heuristics and their neighborhood exploration addresses phases [9,3].

Two observations can be made at this point. Given a container and a set of items to accommodate into according to a
specified objective function:

� some decisions change from one problem to another and are usually related to the objective function, e.g., the assign-
ment of items to bins in the BP problem or the selection of the subset of items to load in the container packing problem,
and can be seen as optimality-related decisions;
� the problem of evaluating the accommodation is the same in different multi-dimensional packing problems and are fea-

sibility-related decisions.

Dissociating the feasibility and the optimality issues by using two different heuristics would then provide the means to
define different solution representations and apply different methods to solve the two sub-problems. Furthermore, the
methods developed for the feasibility issue could be reused for different classes of packing problems and the introduction
of additional constraints on the packing (e.g., guillotine cut) would not modify the heuristic dealing with the optimality
issue. We thus propose TS2PACK, a two-level meta-heuristic, where a first-level heuristic deals with the optimality of the
BP problem, while a second-level heuristic finds feasible packings for the items assigned to the bins. Both heuristics are
tabu search based.

Tabu search is a memory-based search method introduced by Glover [14,15]. Tabu search meta-heuristics avoid local
optima by allowing the objective function to deteriorate and series of cyclic moves in the search space by keeping track
of recent moves in the so-called tabu list. The number, size, contents, and management policies of the tabu list depend
on the specific problem and algorithm. The method can be enhanced by performing diversification, a method to guide
the search toward zones of the solution space not yet explored.

The TS2PACK meta-heuristic (see Algorithm 1 for a schema of the heuristic) computes an initial solution applying the
EP-FFD heuristic developed by the authors [7]. The EP-FFD heuristic is a composite heuristic derived from the well-
known first fit decreasing algorithm for the mono-dimensional bin packing problem. The items are sorted by non-increas-
ing values of their volume and are accommodated one after the other into the existing bins. When an item cannot be loaded
into an existing bin, a new bin is created. The items are accommodated into the bins by placing them on the Extreme

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 747
Points. When an item k is placed in a given position ðxk; yk; zkÞ in a container, an additional item j can be accommodated in
specific points, called Extreme Points (EPs). They are the orthogonal projections, on the three axes, of the points
ðxk þ wk; yk; zkÞ, ðxk; yk þ lk; zkÞ and ðxk; yk; zk þ hkÞ on the items previously accommodated into the container, where wk,
lk and hk are width, length and depth of item k respectively.

Given an initial solution, the TS2PACK meta-heuristic iteratively discards the bin �b with the worst value of the fitness
function uðbÞ defined in [23] as the weighted sum of the volume used by the items loaded into the bin and the number
of items. The items in �b are iteratively loaded into the other bins, selecting, for each item, the bin with the maximum value
of uðbÞ. More precisely, we relax the bin size constraints on the height axis. Thus, each item is accommodated on the
Extreme Points into the bin that minimizes the overall height of the new packing. When the new solution is feasible,
i.e. each subset of items assigned to each bin is packed such that the items do not overlap and the packing is compatible
with the bin size, the new solution is accepted as the current best and a new bin is discarded. Otherwise, the first-stage tabu
search heuristic ACC_TS is applied (see Section 3.1).

The ACC_TS heuristic works on the items-to-bins assignments, without taking into account explicitly the feasibility of
the new solutions. It relaxes the bin dimensions and considers the unfeasibility due to building larger packings than the bin
size as a penalty added to the objective function. The inner heuristic IG_TS (see Section 3.2) is used by the ACC_TS pro-
cedure to check the feasibility and optimize the packing in order to respect the constraints on the bin’s sizes.

The TS2PACK heuristic stops when either a given time limit is reached or the number of bins in the current solution is
equal to the lower bound by Boschetti [5].

3.1. The first-level ACC_TS heuristics

The ACC_TS heuristic works with a set of items and a fixed number of bins. Its goal is to find a set of items-to-bins
assignments able to produce a packing for each bin such that it fits within the dimensions of the bin and the items are
not overlapping. The position of the items in the bins is not determined directly by the ACC_TS heuristic. Rather, it is
assigned by an external procedure which guarantees that each two items assigned to the same bin are not overlapping,
but relaxes the constraints on the bin size, i.e., the boxed envelope of minimum size which contains the items accommo-
dated into a bin can be larger than the bin itself.

ACC_TS is a tabu search-based heuristic. It makes use of a local-search neighborhood whose size and accuracy is
dynamically varied during the search by means of the k-chain-moves procedure. It also includes a diversification phase,
which is applied after a fixed number of iterations without improvement and aims to explore new regions of the solution
space. At each iteration, the ACC_TS heuristics considers the neighbors according to non-increasing values of their objec-
tive function and stops when the best solution found is feasible for 3D-SBSBPP, i.e. each packing satisfies the bin dimen-
sion constraints, or when the time limit given to the overall heuristic is reached.
Algorithm 1 The TS2PACK meta-heuristic

CS;BS: Current and Best Solution
it: item
BinsðSÞ: Function returning the number of bins of a solution S
LBB: Lower bound by Boschetti
Compute the initial solution by EP � FFD
CS ¼ BS ¼ EPFFD
while time limit is not reached or BS–LBB do

�b ¼ argminuðbÞ
Relax the Z size of the bins
for all it 2 �b do

b0 ¼ argmaxuðbÞ
Load it in the EP of b0 minimizing the overall height

end for

Discard �b
if CS is feasible then

BS ¼ CS
else

Relax the constraints on the sizes the bins
ACC TSðCSÞ (see Section 3.2)

end if

end while

748 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
3.1.1. Solution representation

Define:

� I, the set of items;
� C, the set of bins. All bins are similar with dimensions W, D, and H;
� A system of orthogonal axes X, Y, and Z for each container with the origin in the left-back-bottom corner and parallel

to the sides of the bin;
� A function mðjÞ : I ! C that returns the bin to which item j has been assigned.

The solution representation is then defined as follows:

� A partition of the set of the items I yielding jCj subsets Ic:
Ic ¼ fj 2 I : mðjÞ ¼ c; c 2 Cg;
I1 [. . . [IC ¼ I ;

I i \ Ij ¼ ;; 8i; j 2 C; i–j:
� The positions xi; yi, and zi of item i on the orthogonal axes X, Y, and Z, respectively. The positions are such that the
items in the same bin are not overlapping.

This solution representation does not guarantee that the packing fits into the bin.
Let
InfcdðSðcÞÞ ¼ maxf0; LcdðSðcÞÞ � Lcdg;
be a measure of the packing unfeasibility with respect to the size of the bin on the dth axis, where Lcd and LcdðSðcÞÞ stand
for the size on the dth axis of the bin c and packing SðcÞ, respectively.

The following formula is then used to evaluate the unfeasibility of a packing SðcÞ of bin c:
OF ¼ lex
X
c2C

X
d

InfcdðSðcÞÞ;
X
c2C

X
d

LcdðSðcÞÞ
 !

; ð1Þ
where lex is the lexicographic order of the objective functions. S is then a feasible solution of 3D-SBSBPP iff:
X
c2C

X
d

InfcdðSðcÞÞ ¼ 0:
Because the first part of the function is ‘‘flat”, i.e. several solutions have the same value, we use the second term to guide
the algorithm toward solutions that are as compact as possible.

3.1.2. k-chain-moves procedure
Neighborhood definition is a critical issue in the design of many meta-heuristics, and tabu search in particular. Large

neighborhoods generally conduct to better local optimal solutions and search accuracy. On the other hand, they are also
increasing the time required to explore the neighborhood at each iteration and, thus, the computational burden of the
method. Consequently, a larger neighborhood does not necessarily produce a more effective heuristic unless one can
explore it in a very efficient manner. Thompson and Orlin [27,28] proposed the cyclic exchange neighborhood to solve par-
titioning problems, an idea generalized by Ahuja et al. [2]. Ghamlouche et al. [12,13] proposed cycle-based neighbourhoods
for tabu search and path relinking meta-heuristics addressing the fixed-cost, capacitated, multicommodity network design
problem. All the above-mentioned authors define large-size neighborhoods based on the introduction of cycles of simple
moves (e.g., swaps or open/close a single arc). These large neighborhoods are then implicitly explored by solving particular
network flow problems on specifically built and managed graphs.

The k-chain-moves procedure is a simplified version of these approaches, which introduces chains of k changes in the
solution with a negligible additional computational effort. The k-chain-moves procedure does not involve the management
of an additional data structure and, in this sense, it is also somewhat related to the ejection-chain concept proposed by
Glover ([16]; see also [26]) and used mainly in the context of tabu search.

Consider a combinatorial optimization problem P and its set of feasible solutions F. A neighborhood of a feasible solu-
tion s 2 F may be described as a function associating a subset of feasible solutions NðsÞ � F to s, while an associated move
is a rule that when applied to s yields s0 2 NðsÞ. A large neighborhood defining cycles of two consecutive moves may then be
trivially obtained by defining the same neighborhood and applying the move to each solution s0 2 NðsÞ. The size of the new
neighborhood is jNðsÞj2. Applying the same idea recursively k times, we obtain an increasingly larger neighborhood of size

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 749
jNðsÞjk, with members which can be derived from s by means of a series – a cycle – of k moves. The computational time
needed to explore this large neighborhood would increase rapidly with the size of k, however.

The k-chain-moves procedure introduces a cycle of at most k moves, by successively building the neighborhood of the
best solution of the previous iteration and moving to the best neighbor in this neighborhood. The procedure is illustrated in
Algorithm 2 and starts from a current solution CS. The neighborhood of CS is denoted NðCSÞ and gives the first elements
to the final large kN neighborhood identified as NSet. Let BS1 be the best solution obtained after the first iteration (in
NðCSÞ). The procedure then builds the neighborhood NðBS1Þ of BS1, denoted NSet2, and add its elements to NSet. The
procedure continues extracting BS2, the best solution in NSet2, building its neighborhood NSet3 ¼ NðBS2Þ of BS2, adding
its elements to NSet, and so on and so forth. Iterating the procedure k times, NSet will contain a set of solutions that differ
from the starting solutions by cycles of up to k moves.

To illustrate 3D-SBSBPP, consider the neighborhood which, given a starting bin and an item i inside it, builds the
neighbors swapping i with the items in the other bins. Suppose, e.g., we apply this neighborhood to item 1 in bin B1 in
the loading depicted in Fig. 1 to build a cycle of length k ¼ 2. The first iteration, the neighbors are all possible swaps
of item 1 with items in the other bins. Assume the best swap is with item 2 in bin B2. Following the move, item 1 is in
bin B2 and we apply the neighborhood with item 1 in bin B2 on the remaining B� 2 bins, obtaining the swap 1� 3 (neither
the bin B1, nor the bin B2 is considered to avoid cycles). At the end of the procedure, we have built a solution that differs
from the original one by two swaps.
Algorithm 2 k-chain-moves procedure

Input k: length of the cycle to build
CS: Current Solution
GEN N : Function generating the set of solutions of the neighborhood N

AVOID: List of forbidden solutions
NSet: Set of the solutions belonging to the neighborhood
NSet ¼ f;g
AVOID ¼ AVOID [fCSg;BS0 ¼ CS
for i ¼ 1 to k � 1 do

NSeti ¼ GEN N ðAVOID;BSi�1Þ
NSet ¼ NSet [fNSetig
Extract the best solution BSi from NSeti

AVOID ¼ AVOID [fBSig
end for

return NSet
3.1.3. Neighborhood structure

The structure of the neighborhood for the high-level heuristic focuses on changes of assignments of items to bins. It is a
composite neighborhood which uses the 1-swap and the add-drop neighborhoods. Given a target bin b and the list of the
items accommodated in it, the 1-swap neighborhood swaps each item in b with the items assigned to another bin, while the
add-drop neighborhood unloads one item from b and reloads it into another bin. To increase the quality of the composite
neighborhood, we use the 1-swap neighborhood within the k-chain-moves procedure.

The procedure that builds this neighborhood is described in Algorithm 3. The target bin �b is the bin with the worst con-
tribution to the objective function. Then the k-chain-moves is applied with the 1-swap neighborhood. Finally, the add-drop
neighborhood is applied. The packing of bins in the candidate solution which are not feasible, i.e. the packing does not
respect the bin dimensions, is optimized by means of the IG_TS heuristic presented at the next sub-section.

It is simple to see that the 1-swap neighborhood has size OðjI�bjnÞ, where jI�bj is the number of items loaded in bin �b, while
the add-drop neighborhood is OðCjI�bjÞ, where C is the number of bins in the solution. Thus, the composite neighborhood is
OðjI�bjknþ CjI�bjÞ.
3.1.4. Tabu list structure

The tabu list records the last assignments of an item to a bin. This prevents the reversal of the assignment status as long
as they remain in the list. Given a solution in the composite neighborhood, the tabu moves are built as follows:

1. If we swap item i in bin l with item j in bin m, we forbid the assignment of i to l and j to m;
2. If we move item i from bin l to bin m, we forbid the assignment of i to l.

Fig. 1. Example of 2-chain-moves application.

Algorithm 3 ACC_TS’s composite-neighborhood

Input K: Length of the chain to build
Input CS: Current solution
ADðs; bÞ: Add and Drop neighborhood of solution s and target bin b

SW ðs; b; kÞ: 1-Swap neighborhood of solution s and target bin b with k-chain-moves procedure with size k

NðiÞ: Whole neighborhood of solution s and target bin b

BS: Best solution
�b ¼ arg max lexf

P
d InfcdðSÞ;

P
dLcdðSÞg

NðCSÞ ¼ f;g
Generate SW ðBS; �b; kÞ
Extract the best solution from SW ðCSÞ and assign it to BS
�b ¼ arg max lexf

P
d InfcdðSÞ;

P
dLcdðSÞg

Generate ADðBS; �bÞ
NðCSÞ ¼ SW ðCSÞ [ADðBS; �bÞ

750 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
The tabu list has a fixed length.
3.1.5. Diversification phase

The diversification phase is applied once a fixed number of non improving iterations is reached. Given C as the number
of bins in the current solution, the diversification phase changes the current solution of the ACC_TS heuristic by perform-
ing on the first C=2 bins in the solution the k-chain-moves procedure (with k ¼ C=2) applied to the add-drop neighbor-
hood, and taking the best solution of the resulting neighborhood as the new solution.
3.2. Feasibility of a packing: The IG_TS procedure

The aim of the second-level procedure is to find the accommodation of the items that minimizes the unfeasibility of the
resulting packing as defined in Eq. (1) . The IG_TS procedure is a tabu search-based local search, which uses the implicit
solution representation given by the Interval Graph (IG) approach proposed by Fekete and Schepers [10,11] and thus
reduces the search space.

Given a list of items to be accommodated into a bin, the procedure first builds an initial packing by means of an Extreme
Point-based heuristic derived from [7]. This heuristics relaxes the height of the bin and considers the items one after the
other without any sorting. Each item is loaded on the EP minimizing the Z, Y, and X coordinates, in this order. The result-

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 751
ing packing is transformed to yield the representation by Fekete and Schepers and the tabu search-based local search is
applied. The heuristic works directly on the IGs, and uses a fixed sized tabu-list (no long-term memories or diversification
phase are used). At procedure considers the neighbors according to non-increasing values of their objective function and
stops when the number of the iterations is reached, or when the best solution defines a packing compatible with the bin
dimensions.
3.2.1. Solution representation

According to the representation of Fekete and Schepers, a three-dimensional packing and the projections of one of its
items i on the dth coordinate axis generate intervals on the real numbers set, which can be described using a graph-based
representation. We recall in this sub-section a number of basic definitions. For a more detailed description of this repre-
sentation, refer to [10,11].

Consider the two packings in Fig. 2. They are made by the same set of items, use the same volume, and are characterized
by the same rectangular minimal envelope. One notices a common combinatorial structure, the differences arising from
how items ‘‘see” each other orthogonally to the frame axes. Projecting the items on the axes (see Fig. 2), one may observe
how the item projections overlap on each axis. Associate to each axis a graph GdðV ;EdÞ, where the nodes represent the
items and two nodes are connected by an edge if the corresponding projections on the dth axis overlap (even partially).
The graphs associated to the two packings are the same. Moreover, by construction, the graphs are Interval Graphs (IGs).

Given an IG, its co-graph is a Comparability Graph (CG). A transitive orientation of the CG determines the positions of
the items on the axis. Thus, we may build a graph representation for a 3D packing by computing, for each coordinate axis,
its IG representation and vice versa. Moreover, a set of IGs defines not a single packing, but a set of packings with the same
minimal boxed envelope. For instance, the IGs in Fig. 2 represent 36 different packings. Define:

� C, a container with width W, depth D, and height H;
� IC, the set of items assigned to a container;
� A system of orthogonal axes X, Y, and Z with origin O in the left-back-down corner of the container and parallel to the

sides of the bin;
� The positions xi; yi, and zi of the left-back-down corner of item i 2 IC in the packing, on the orthogonal axes X, Y, and Z.

Then, more formally, a set of three graphs GC
d , on the three axes d, with vertex set V ¼ IC and respective edge sets Ed , are

defined as a Packing Class (PC) in 3 dimensions for container C if:

1. Each GC
d is an IG;

2. 8i; j 2 V , it exists a dimension d such that eij R Ed ;;
3. Each stable set of GC

d is d-feasible, i.e. the items associated to the stable sets can be lined up on the axis d; 8d, without
exceeding the size of the bin on the same axis.

Conditions 1 and 3 can be efficiently checked by exploiting the properties of the IGs, the transitive orientations of the
co-graphs of GC

i defining the packings in the PC. Moreover, all the packings in a PC have the same box envelope. An effi-
cient way to check condition 1 then is to verify whether the graph does not contain chordless cycles with four nodes and its
co-graph is a CG. In the following, we will refer to a chordless cycle with 4 nodes as a C4 chordless cycle. The second task
can be accomplished by means of the Transitively Orientable (TRO) algorithm by Golumbic [17], which verifies whether a
Fig. 2. Example of definition of packings by the definition by Fekete and Schepers.

752 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
graph is a CG by building one of its transitive orientation in OðdjEjÞ, where d is the maximum degree of a vertex of the
graph and jEj is the number of edges (see [17] for details on IGs, transitive orientations, and the TRO algorithm).

When condition three holds, the envelope of the packings represented by a PC lies inside the container C. We represent
the solutions by means of a relaxation of the PCs, where conditions 1 and 2 hold, while condition 3 is ignored. We call a
solution satisfying conditions 1 and 2 a Semi-Packing Class (SPC). Similarly to the PC, each SPC defines a set of actual
packings characterized by the same minimal boxed envelope.

We thus define the feasible solutions and the search space of the IG_TS heuristic as the set of the SPCs that can be built
with the set IC. Given a SPC, called s, we define Lðs; dÞ as the size of the packings belonging to s on the d axis (all the
packings have the same minimal boxed envelope). Each solution is evaluated by means of the objective function (1).
According to this definition, a SPC is a PC iff InfcdðsÞ ¼ 0, 8d ¼ fX ; Y ; Zg.

3.2.2. Neighborhood structure

The neighborhood we propose for a given SPC is defined by changes in item overlapping. Recall that the overlapping of
two items i and j in dimension d corresponds to adding the edge eij to the IGs GC

d of the SPC. Moreover, we can evaluate
the size of the packings represented by the SPC. We therefore define the neighborhood directly on the graphs GC

d .
The neighborhood is denoted overlapping rule exchange and is displayed as Algorithm 4. It is defined by considering

each pair of items ði; jÞ in the container and changing the edges in the three IGs describing the corresponding packing.
Seven such feasible combinations can be obtained, as shown in Table 1, each defining an overlapping rule between items
i and j.
Algorithm 4 Overlapping rule exchange

Input CS: current SPC defined by the IGs GC
x ðV x;ExÞ, GC

y ðV y ;EyÞ, and GC
z ðV z;EzÞ

for all item i do

for all item j–i do
for all overlapping rule r do

Apply the overlapping rule
for all dimensions d 2 fX ; Y ; Zg do

if r adds the edge eij to Ed then
Ed ¼ Ed [feijg [feik : pk 6 pj; pk þ lk P pj þ lj; pk; pj 2 P d ; lk; lj 2 Ldg

else
Ed ¼ Ed n ffeijg [feik : pk P pl; pk þ lk 6 pj þ lj; pk; pj 2 P d ; lk; lj 2 Ldgg

end if
end for
if GC

d ðV d ;Ed0Þ are IGs, 8d then
Add the solution to the neighborhood

end if
end for

end for
end for
Recall that, by the properties of the IGs, a SPC represents a group of accommodations of items, each packing displaying
the same overlapping between the items. Then, under particular conditions, a new SPC representing the same packing may
be obtained by adding or removing a single edge from an IG of a SPC, as illustrated in the following. Consider the packing
in Fig. 3a. The IG related to the Y axis is represented by the graph depicted in Fig. 3b. Let us modify this IG by adding the
edge (3,4) on Y, leaving the IG on X unchanged.
Table 1
Overlapping rules for two items i and j in three dimensions

X Y Z GC
X GC

Y GC
Z

1 O O NO eij 2 EX eij 2 EY eij R EZ

2 O NO O eij 2 EX eij R EY eij 2 EZ

3 NO O O eij R EX eij 2 EY eij 2 EZ

4 O NO NO eij 2 EX eij R EY eij R EZ

5 NO O NO eij R EX eij 2 EY eij R EZ

6 NO NO O eij R EX eij R EY eij 2 EZ

7 NO NO NO eij R EX eij R EY eij R EZ

O = overlapping, NO = not overlapping.

Fig. 3. Example of the add overlapping rule.

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 753
Then we obtain, on the Y axis, the IG in Fig. 4b. Its co-graph is represented in Fig. 4c. To obtain one of the accommo-
dations of the items represented by the SPC, we build the transitive orientation of the co-graph represented in Fig. 4d.
Assigning the positions of the items on the Y dimension according to the transitive orientation, we obtain the packing
of Fig. 4a, which is the same one represented in Fig. 3a. Thus, the same packing can belong to different SPCs. One can
easily check that the same situation is obtained when edges (2, 4) and (1, 4) are added.
Fig. 4. Adding edge (3,4) to an IG.

Fig. 5. Adding edge (1, 4) to an IG.

754 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
Let us now consider the situation in Fig. 5. Starting from the packing in Fig. 3a, we add the edge (1, 4) to the IG

represented in Fig. 3b and obtain the new graph of Fig. 5b. Following the same procedure as in the previous example,
the co-graph of Fig. 5b is depicted in Fig. 5c, while Fig. 5d represents the transitive orientation of the co-graph. In this
case, after assigning the positions of the items according to this transitive orientation, the accommodation of the items
is changed, see Fig. 5a.

These different behaviors are explained by the structure of the IGs involved and the position of the corresponding items.
Thus, items 1, 2 and 3 form a clique in the IG and, thus, each pair is (partially, in case) overlapping on the Y axis. Fur-
thermore, the positions of the items in Fig. 3a have the same y value, even though the height of item 1 differs from the
heights of items 2 and 3. From a logical point of view, in fact, the first example corresponds to using the following add
overlapping rule: ‘‘Items 3 and 4 overlap, but item 4 does not overlap with items 1 and 2”. This requirement cannot be sat-
isfied, however, because the overlapping of items 3 and 4 implies to add the overlapping with the other two items too. This
situation is managed by the IG on the Y axis with the co-graph, which does not change the represented packing.

A heuristic rule is used to reduce the probability of cycling when changing the SPCs by adding or removing edges. The
heuristic proceeds by considering the edge one wants to add or drop as well as the other edges sharing a node and display-
ing the properties indicated in the following. Let Gd ¼ ðV d ;EdÞ be an IG and, for the items in V d , let P d and Ld represent the
sets of item positions and lengths on axis d, respectively. To add an edge eij to Ed , we then build the new graph G2, which
defines the add overlapping rule (move):
G2 ¼ V d ;E0d
� �

E0d ¼ Ed [feijg [feik : pk 6 pj; pk þ lk P pj þ lj; pk; pj 2 P d ; lk; lj 2 Ldg:
ð2Þ
Thus, according to the overlapping rule (2), adding an edge eij to an existing IG of a SPC implies that one also adds the
edges eik related to the items k that have their end points higher than item j and their left-back-down corner position at least
equal to j on the considered axis. A similar remove overlapping rule (move) is defined to specify that, when removing edge
eij of an existing IG of a SPC, one also removes edges eik related to the items k with the same end point on the considered
axis as item j. More formally (see rule (3)), given an IG Gd ¼ ðV d ;EdÞ and an edge eij to be removed, the following new
graph G3 defines the remove overlapping rule (move):
G3 ¼ V d ;E0d
� �

E0d ¼ Ed n ffeijg [feik : pk P pj; pk þ lk 6 pj þ lj; pk; pj 2 P d ; lk; lj 2 Ldgg:
ð3Þ
Once the new graphs are generated, one must verify whether they are IGs. It is in fact easy to see that adding or remov-
ing an edge form an IG may yield a graph which is not an IG, as illustrated in Fig. 6. The graph in Fig. 6a has no C4 chord-
less cycle and is an IG with a CG as its co-graph (illustrated in Fig. 6b). Removing the edge (2, 4) yields the graph depicted
in Fig. 6c. This graph is without C4 chordless cycles, but its co-graph (Fig. 6d) is not a CG and, thus, the corresponding
graph is not an IG. A similar example can be build for the case of adding an edge to an existing IG.
Fig. 6. Example of removing an edge from an IG.

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 755
If the new graphs are IGs, the objective function is evaluated and the new solution is inserted in the neighborhood,
otherwise the solution is discarded. The size of the neighborhood is OðjICj2Þ. Moreover, both the verification whether a
new graph is an IG and the computation of the transitive orientations can be efficiently performed by means of the prop-
erties of IGs (see [17]).
3.2.3. Tabu list structure

Moves belong to the tabu list each time a solution is selected as follows. Suppose the overlapping rule yielding the
selected solution is j. A new solution will be considered ‘‘tabu” if its overlapping rule is j or �j, where �j is the move that
is obtained by substituting, on each dimension, the overlapping rule j with its inverse. For instance, if j is the first overlap-
ping rule in Table 1, its reverse move �j is the overlapping rule 6. The tabu list has a fixed length.
4. Computational results

In this section we present and analyze the results of a rather comprehensive computational experimentation. The per-
formance of the algorithm is compared with that of the exact algorithm for 3D-SBSBPP by Martello et al. [24] and the
GLS by Faroe et al. [9]. We do not report the results of the tabu search algorithm by Lodi et al. [20] because their procedure
is outperformed by GLS.

3D-SBSBPP instances come from [24]. For Classes 1 to 3, the bin size is W ¼ H ¼ D ¼ 100 and the following five types
of items are considered:

� Type 1: wj uniformly random in 1; 1
2
W

� �
, hj uniformly random in 2

3
H ;H

� �
, dj uniformly random in 2

3
D;D

� �
;

� Type 2: wj uniformly random in 2
3
W ;W

� �
, hj uniformly random in 1; 1

2
H

� �
, dj uniformly random in 2

3
D;D

� �
;

� Type 3: wj uniformly random in 2
3
W ;W

� �
, hj uniformly random in 2

3
H ;H

� �
, dj uniformly random in 1; 1

2
D

� �
;

� Type 4: wj uniformly random in 1
2
W ;W

� �
, hj uniformly random in 1

2
H ;H

� �
, dj uniformly random in 1

2
D;D

� �
;

� Type 5: wj uniformly random in 1; 1
2
W

� �
, hj uniformly random in 1; 1

2
H

� �
, dj uniformly random in 1; 1

2
D

� �
. The classes

are built as follows:
� Class 1: type 1 with probability 60%, type 2, 3, 4, 5 with probability 10% each;
� Class 2: type 4 with probability 60%, type 1, 2, 3, 5 with probability 10% each;
� Class 3: type 5 with probability 60%, type 1, 2, 3, 4 with probability 10% each. Classes from 4 to 6 are generated accord-

ing to the rules by Berkey–Wang [4]:
� Class 4: wj, hj and dj uniformly random in [1,10] and W ¼ H ¼ D ¼ 10;
� Class 5: wj, hj and dj uniformly random in [1,35] and W ¼ H ¼ D ¼ 40;
� Class 6: wj, hj and dj uniformly random in [1,100] and W ¼ H ¼ D ¼ 100.

For each class (i.e., 1, 2, 3, 4, 5, and 6) we consider instances with a number of items equal to 50, 100, 150, and 200.
Given a class and an instance size, we generate 10 different problem instances based on different random seeds. Bins are
cubic in all instances.

The results of the benchmark algorithms GLS and MPV are taken from [24], [9], respectively. Both algorithms are run
on a Digital 500 workstation with a 500 MHz 21164 CPU with a time limit of 1000 seconds for each instance. TS2PACK is
coded in C++ and tested on a Pentium4 2000 Mhz CPU, with a time limit of 300 seconds to solve each instance. We used
the results of the SPEC CPU2000 benchmarks published in [1] to obtain the equivalence in terms of performance between
the Digital and the Pentium4 computers. In the following, when citing computational times, we refer to the equivalent com-
putational time on the Digital 500 workstation, i.e. if the computer in use is not a Digital 500 workstation the computa-
tional time is changed by a ratio given by the SPEC CPU2000 benchmarks.

In the IG_TS procedure, the iteration limit is fixed to the number of the items assigned to the bin, while the size of the
tabu list is equal to the minimum between the items assigned to the bin and 7.

First, we present the tuning of the parameters of the heuristic, including the size of the cycles of moves induced by the
k-chain-moves procedure in Section 4.1. Section 4.2 is then devoted to compare the TS2PACK heuristic to state-of-the-art
methods.
4.1. Algorithm tuning

The parameter values affecting the computational behavior of the overall algorithm are the number of iterations of the
IG_TS heuristic and the length of the cycles in the k-chain-moves heuristic. It is intuitive that the computational time
of each iteration of the ACC_TS heuristic increases proportionally with the number of iterations of the IG_TS heu-
ristic. According to our results, performing more than seven iterations of the IG_TS heuristic hurts the performances of

756 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
the overall heuristic. Moreover, to reduce computational time, we apply the IG_TS heuristic not to all the packings in the
macro-neighborhood of the ACC_TS heuristic, but only to its candidate solution.

The results of the impact of k-chain-moves heuristic are summarized in Table 2. The class of the instances, the sizes on
the bins, and the number of items are reported in the first three columns, respectively. The other columns show the mean
number of bins over 10 instances when the size of the k parameter of the k-chain-moves procedure is fixed to 1, 2, and 3,
respectively. We do not report the results for values more than 3, because they does not produce better solutions due to the
computation effort of the resulting procedure. Notice that k ¼ 1 corresponds to not applying the k-chain-moves procedure,
while k ¼ 2 and k ¼ 3 imply the introduction of cycles of item assignment to bins of length 2 and 3, respectively. One
notices that, on small-sized instances, the k-chain-moves procedure is not relevant. The effects of the procedure can be
noticed when the number of the items involved increases. In particular, the impact of the k-chain-moves procedure is higher
on class 3, which includes instances with items significantly smaller than the bins.

The other parameter values of the ACC_TS and IG_TS heuristics were determined experimentally considering, for each
combination of class and number of items, two instances only and reducing the computational effort to 20 seconds. We
noticed a generally small sensitivity of the results with respect to changes in the parameter values.

Table 3 displays the results of the TS2PACK algorithm when the IG_TS heuristic is applied (column IG TS) and when the
IG_TS heuristic is replaced by its initial solution only (column EP FFD), comparing them with the results of the lower
bound by Boschetti [5]. The mean gap between the two versions is about 1%, which indicates that the IG_TS heuristic
is effective. In particular, it will contribute to achieve state-of-the-art results using TS2PACK, as shown in the next section.
4.2. TS2PACK computational results

The comparison between the performances of TS2PACK, GLS heuristic [9] and MPV, the Branch & Bound algorithm by
Martello et al. [24], is presented in Table 4. The class of the instances, the sizes on the bins, and the number of items are
reported in the first three columns, respectively. We report in the next three columns, the mean number of bins over 10
instances obtained by TS2PACK, GLS and MPV, stopping them after 1000 seconds for each instance. Notice that the results
of MPV, being the algorithm stopped after a fixed amount of time, are not the proved optimal values. For GLS the results
displayed are taken from the literature, while for MPV the results have been obtained by the code available from the
authors, modified according to the erratum by Boef [8]. The algorithm run on a Pentium4 2000 Mhz CPU, with a time
Table 2
TS2 PACK performance for various k parameter values in the k-chain-moves procedure

Class Bins n k = 1 k = 2 k = 3

1 100 � 100 50 13.4 13.4 13.4
100 26.7 26.7 26.7
150 37.2 37 37
200 51.3 51.2 51.1

2 100 � 100 50 29.4 29.4 29.4
100 58.9 58.9 58.9
150 86.8 86.8 86.8
200 118.8 118.8 118.8

3 100 � 100 50 8.3 8.3 8.3
100 15.6 15.2 15.2
150 20.6 20.3 20.1
200 27.7 27.5 27.4

4 10 � 10 50 9.8 9.8 9.8
100 19.2 19.1 19.1
150 29.3 29.3 29.2
200 37.8 37.8 37.7

5 40 � 40 50 7.4 7.4 7.4
100 12.3 12.3 12.3
150 15.9 15.8 15.8
200 23.8 23.7 23.5

6 100 � 100 50 9.3 9.2 9.2
100 18.9 18.8 18.8
150 25.1 24.9 24.8
200 30.5 30.3 30.3

Total bins 734 731.9 731

Table 3
TS2 PACK performance with and without the IG_TS procedure

Class Bins n IG_TS EP-FFD LB

1 100 � 100 50 13.4 13.7 12.9
100 26.7 27 25.6
150 37 37.4 35.8
200 51.1 53 49.7

2 100 � 100 50 29.4 29.4 29
100 58.9 59 58.5
150 86.8 86.8 86.4
200 118.8 118.8 118.3

3 100 � 100 50 8.3 8.3 7.6
100 15.2 15.6 14
150 20.1 21.4 18.8
200 27.4 28.3 26

4 10 � 10 50 9.8 9.8 9.4
100 19.1 19.1 18.4
150 29.2 29.3 28.5
200 37.7 38 36.7

5 40 � 40 50 7.4 7.4 6.8
100 12.3 12.4 11.5
150 15.8 16.2 14.4
200 23.5 24.1 22.7

6 100 � 100 50 9.2 9.3 8.7
100 18.8 18.9 18.4
150 23.9 24.2 22.5
200 30 30.2 28.2

Total bins 729.8 737.6 708.8

GAP WITH LB

IG_TS (%) EP-FFD (%)

3.88 6.20
4.30 5.47
3.35 4.47
2.82 6.64
1.38 1.38
0.68 0.85
0.46 0.46
0.42 0.42
9.21 9.21
8.57 11.43
6.91 13.83
5.38 8.85
4.26 4.26
3.80 3.80
2.46 2.81
2.72 3.54
8.82 8.82
6.96 7.83
9.72 12.50
3.52 6.17
5.75 6.90
2.17 2.72
6.22 7.56
6.38 7.09
2.96 4.06

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 757
limit of 1000 seconds to solve each instance. The last column reports the mean number of bins over 10 instances obtained
by means of the lower bound by Boschetti [5].

The figures show that TS2PACK obtained better results than both GLS and MPV. Usually, GLS and TS2PACK find the
same results on small instances, while the gap increases with the size of the instance. In general, our algorithm achieves
the same or better results than GLS. The most difficult instances for TS2PACK are in class 3, characterized by items with

Table 4
Comparing TS2 PACK, GLS, and MPV

Class Bins n TS2PACK GLS MPV LB

1 100 � 100 50 13.4 13.4 13.5 12.9
100 26.7 26.7 27.3 25.6
150 37 37 38.2 35.8
200 51.1 51.2 52.3 49.7

2 100 � 100 50 29.4 29.4 29.4 29
100 58.9 59 59.1 58.5
150 86.8 86.8 87.2 86.4
200 118.8 119 119.5 118.3

3 100 � 100 50 8.3 8.3 9.1 7.6
100 15.2 15.1 17.5 14
150 20.1 20.2 24 18.8
200 27.4 27.2 31.8 26

4 10 � 10 50 9.8 9.8 9.8 9.4
100 19.1 19.1 19.4 18.4
150 29.2 29.4 29.6 28.5
200 37.7 37.7 38.2 36.7

5 40 � 40 50 7.4 7.4 8.1 6.8
100 12.3 12.3 15.3 11.5
150 15.8 15.8 19.7 14.4
200 23.5 23.5 27.9 22.7

6 100 � 100 50 9.2 9.2 10.1 8.7
100 18.8 18.9 20.2 18.4
150 23.9 23.9 27.3 22.5
200 30 29.9 34.9 28.2

Total bins 729.8 730.2 769.4 708.8

Table 5
Comparing TS2 PACK and GLS after 60, 150 and 1000 seconds

Class Bins n TS2 PACK GLS TS2 PACK GLS TS2 PACK GLS

60 seconds 150 seconds 1000 seconds

1 100 � 100 50 13.4 13.4 13.4 13.4 13.4 13.4
100 27 26.9 26.7 26.7 26.7 26.7
150 37.7 37.5 37 37.2 37 37
200 53 52.8 51.1 52.1 51.1 51.2

2 100 � 100 50 29.4 29.4 29.4 29.4 29.4 29.4
100 59.2 59 58.9 59 58.9 59
150 87.3 87.1 86.8 86.9 86.8 86.8
200 119.2 119.9 118.8 119.7 118.8 119

3 100 � 100 50 8.3 8.3 8.4 8.3 8.3 8.3
100 15.4 15.1 15.3 15.1 15.2 15.1
150 20.9 20.7 20.5 20.3 20.1 20.2
200 28 27.8 27.6 27.5 27.4 27.2

4 10 � 10 50 9.9 9.8 9.8 9.8 9.8 9.8
100 19.5 19.3 19.1 19.1 19.1 19.1
150 29.4 29.5 29.2 29.4 29.2 29.4
200 38.7 38.5 37.7 38 37.7 37.7

5 40 � 40 50 7.4 7.4 7.4 7.4 7.4 7.4
100 12.3 12.3 12.3 12.3 12.3 12.3
150 16 15.8 15.8 15.8 15.8 15.8
200 24.8 24.4 23.5 24.1 23.5 23.5

6 100 � 100 50 9.2 9.2 9.2 9.2 9.2 9.2
100 19.2 18.9 18.8 18.9 18.8 18.9
150 24.6 24.5 24.8 24.1 23.9 23.9
200 30.8 30.6 30 30.1 30 29.9

Total bins 740.6 738.1 731.5 733.8 729.8 730.2

758 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760

T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760 759
a volume that is quite smaller than that of the bin. In those instances, TS2PACK spends a lot of time in each iteration of the
IG_TS heuristic, even when, after discarding a new bin, the solutions in the neighborhood are probably not feasible for 3D-
SBSBPP. The solution quality may be slightly improved increasing the maximum time of the heuristic.

The results show a total gap between TS2PACK and GLS heuristics less than 1%. Table 5 compares the behavior of the
two heuristics after 60, 150, and 1000 seconds. In general, GLS obtains better results after 60 seconds, while the opposite is
true after 150 seconds, where the total gap between TS2PACK and GLS is of 2.3 bins. The gap reduces when the time limit
increases, even if TS2PACK continues to be the algorithm with the best overall behavior. This is probably due to the fact
that both algorithms are able to achieve optimal solutions for a good percentage of the instances. We tried to verify if the
solution of the TS2PACK could be improved by using them as initial solutions of MPV truncated after 10000 seconds, but
for three instances only, an improvement of one bin was observed.
5. Conclusions

In this paper, we presented a new tabu search-based two-level approach for 3D-SBSBPP. This approach separates the
search for the optimal number of bins from the optimization of the accommodation of items within bins, resulting into a
more flexible procedure than the existing ones. Within this framework, we extended the Interval Graph representation of
packings by Fekete and Schepers to make it usable within a heuristic framework. We also introduced the k-chain-moves
procedure, a general method to dynamically increase the size of a neighborhood and the quality of the associated solution,
without significantly increasing the computational burden. Extensive computational results on benchmark problem
instances show that TS2PACK outperforms other methods for 3D-SBSBPP, obtaining very good results when short com-
putation times are available.
Acknowledgements

Partial funding for this project has been provided by the Natural Sciences and Engineering Council of Canada. This
research has been partially supported by ASI, the Italian Space Agency, under the ICARO Project no. ASI I/R/137/01.
References

[1] Standard performance evaluation corporation CPU2000. URL: http://www.spec.org/cpu2000/results/cpu2000.html.
[2] R. Ahuja, J. Orlin, D. Sharma, Very large-scale neighborhood search, International Transactions in Operational Research 7 (2000) 301–317.
[3] R. Alvarez-Valdes, F. Parreno, J. Tamarit, A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems, Journal of the

Operational Research Society 4 (56) (2005) 414–425.
[4] J.O. Berkey, P.Y. Wang, Two dimensional finite bin packing algorithms, Journal of the Operational Research Society 38 (1987) 423–429.
[5] M.A. Boschetti, New lower bounds for the finite three-dimensional bin packing problem, Discrete Applied Mathematics 140 (2004) 241–258.
[6] F.K.R. Chung, M.R. Garey, D.S. Johnson, On packing two-dimensional bins, SIAM – Journal of Algebraic and Discrete Methods 3 (1) (1982) 66–76.
[7] T.G. Crainic, G. Perboli, R. Tadei, Extreme point-based heuristics for three-dimensional bin packing, INFORMS Journal on Computing,

forthcoming.
[8] E. den Boef, J. Korst, S. Martello, D. Pisinger, D. Vigo, Erratum to ‘‘the three-dimensional bin packing problem”: Robot-packable and orthogonal

variants of packing problems, Operations Research 53 (4) (2005) 735–736.
[9] O. Faroe, D. Pisinger, M. Zachariasen, Guided local search for the three-dimensional bin packing problem, INFORMS Journal on Computing 15 (3)

(2003) 267–283.
[10] S.P. Fekete, J. Schepers, A new exact algorithm for general orthogonal d-dimensional knapsack problems, ESA’97, Springer Lecture Notes in

Computer Science 1284 (1997) 144–156.
[11] S.P. Fekete, J. Schepers, A combinatorial characterization of higher-dimensional orthogonal packing, Math. Oper. Res. 29 (2) (2004) 353–368, doi

http://dx.doi.org/10.1287/moor.1030.0079.
[12] I. Ghamlouche, T.G. Crainic, M. Gendreau, Cycle-based neighbourhoods for fixed-charge capacitated multicommodity network design, Operations

Research 51 (4) (2003) 655–667.
[13] I. Ghamlouche, T.G. Crainic, M. Gendreau, Path Relinking, Cycle-based neighbourhoods and capacitated multicommodity network design, Annals

of Operations Research 131 (2004) 109–133.
[14] F. Glover, Tabu search – part I, ORSA Journal of Computing 1 (3) (1989) 190–206.
[15] F. Glover, Tabu search – part II, ORSA Journal of Computing 2 (1) (1990) 4–32.
[16] F. Glover, Ejection Chains, Reference structures and alternating path methods for traveling salesman problems, Discrete Applied Mathematics 49

(1992) 231–255.
[17] M.C. Golumbric, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, USA, 1980.
[18] D.S. Johnson, Near-optimal bin packing algorithms, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1973.
[19] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: A survey, European Journal of Operational Research 141 (2002) 241–252.
[20] A. Lodi, S. Martello, D. Vigo, Approximation algorithms for the oriented two-dimensional bin packing problem, European Journal of Operational

Research 112 (1999) 158–166.
[21] A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems, INFORMS Journal on

Computing 11 (1999) 345–357.

http://www.spec.org/cpu2000/results/cpu2000.html
http://dx.doi.org/10.1287/moor.1030.0079

760 T.G. Crainic et al. / European Journal of Operational Research 195 (2009) 744–760
[22] A. Lodi, S. Martello, D. Vigo, Heuristic algorithms for the three-dimensional bin packing problem, European Journal of Operational Research 141
(2002) 410–420.

[23] A. Lodi, S. Martello, D. Vigo, Tspack: A unified tabu search code for multi-dimensional bin packing problems, Annals of Operations Research 131
(2004) 203–213.

[24] S. Martello, D. Pisinger, D. Vigo, The three-dimensional bin packing problem, Operations Research 48 (2) (2000) 256–267.
[25] G. Perboli, Bounds and heuristics for the packing problems, Ph.D. thesis, Politecnico di Torino, available at http://www.orgroup.polito.it/People/

perboli/phd-thesys.pdf 2002.
[26] C. Rego, C. Roucairol, A parallel tabu search algorithm using ejection chains for the VRP, in: I. Osman, J. Kelly (Eds.), Meta-Heuristics: Theory &

Applications, Kluwer Academic Publishers., Norwell, MA,, 1996, pp. 253–295.
[27] P. Thompson, J. Orlin, The theory of cyclic transfers, Technical report, Operations Research Center, MIT, Cambridge, MA, 1989.
[28] P. Thompson, H. Psaraftis, Cyclic transfer algorithms for multivehicle routing and scheduling problems, Operations Research 41 (1993) 935–946.
[29] G. Wäscher, H. Haussner, H. Schumann, An improved typology of cutting and packing problems, European Journal of Operational Research,

forthcoming, doi http://dx.doi.org/10.1016/j.ejor.2005.12.047.

http://www.orgroup.polito.it/People/perboli/phd-thesys.pdf
http://www.orgroup.polito.it/People/perboli/phd-thesys.pdf
http://dx.doi.org/10.1016/j.ejor.2005.12.047

	TS2PACK: A two-level tabu search for the three-dimensional bin packing problem
	Introduction
	Literature review
	 {TS}^{2}PACK: A two-stage tabu search heuristic for 3D-SBSBPP
	The first-level ACC_TS heuristics
	Solution representation
	k-chain-moves procedure
	Neighborhood structure
	Tabu list structure
	Diversification phase

	Feasibility of a packing: The IG_TS procedure
	Solution representation
	Neighborhood structure
	Tabu list structure

	Computational results
	Algorithm tuning
	 {TS}^{2}PACK computational results

	Conclusions
	Acknowledgements
	References

