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One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate
definition of the points at which to place the items inside the bins, because the performance of exact and

heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the
extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional
container. The extreme point rule is independent from the particular packing problem addressed and can handle
additional constraints, such as fixing the position of the items. The new extreme point rule is also used to
derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational
results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same
heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed
for the problem.
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1. Introduction
One of the main issues in addressing multidimen-
sional packing problems is the definition of the
positions at which to place the items inside the con-
tainer (Lodi et al. 2002a, 1999b; Perboli 2002). The
performance in terms of computational efficiency
and solution quality of exact and heuristic solution
methods for multidimensional packing problems is
actually very sensitive to the item-positioning rule
(Lodi et al. 2004). Although the issue is not rele-
vant for monodimensional packing problems, it is
harder to address in the three-dimensional (3D) case
than in the two-dimensional (2D) one. Thus, the
approaches used for two-dimensional problems can-
not generally be extended to the three-dimensional
case, or in the best case, the extension yields a pack-
ing where the volume of the bins is underutilized
(Lodi et al. 2002a, b).
We introduce a new rule for packing items inside a

container, the extreme point (EP) rule, that is indepen-
dent from the particular packing problem addressed.
The EP rule can be applied to any 3D- or 2D-pack-
ing problem, as well as to packing problems with

additional constraints, e.g., when the accommodation
of the items must follow fixed positions inside the con-
tainer. The new EP rule is also efficient relative to both
the computational effort and the resulting container-
volume utilization. On the one hand, the EPs of a
given packing are polynomially computable. On the
other hand, when applied within packing heuristics,
the EP rule allows us to significantly improve the uti-
lization of the container volumes and, thus, the per-
formance of the respective method.
We derive new EP-based heuristics to efficiently

address the three-dimensional (3D-BP) and the two-
dimensional (2D-BP) bin-packing problems. Given a
set of rectangular-shaped items i ∈ I with sizes wi,
di, and hi, and an unlimited number of containers of
fixed sizes W , D, and H , called bins, the 3D-BP prob-
lem consists of orthogonally packing, without over-
lapping, all the items into the minimum number of
bins. We assume that the items cannot be rotated. In
the 2D-BP problem, the heights hi and H of items and
bins, respectively, are ignored.
The EP idea is used to design modified versions

of the well-known first fit decreasing (FFD) and best
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fit decreasing (BFD) heuristics for the monodimen-
sional BP. Extensive computational results show that
the new EP-based constructive heuristics applied to
benchmark test instances yield results that improve
over those obtained by the existing constructive
heuristics. Moreover, we derive an EP-based com-
posite heuristic that, with a negligible computational
effort, outperforms existing constructive heuristics for
both the 3D-BP and 2D-BP problems, as well as
state-of-the-art metaheuristics and branch-and-bound
methods.
The paper is organized as follows. Section 2 sum-

marizes the methods previously proposed to place
items into containers and solve the 3D-BP problem.
Extreme points are introduced in §3, whereas §4 is
dedicated to presenting the new constructive heuris-
tics. Computational results are presented and dis-
cussed in §5.

2. Literature Review
We review the literature along two directions: first,
the methods proposed to place items into a container;
second, solution methods for the three-dimensional
bin-packing problem.

2.1. Placement of Items into Two- and
Three-Dimensional Containers

A first attempt to model multidimensional packings is
due to Gilmore and Gomory (1965). They proposed a
representation given by the enumeration of all the pat-
terns, i.e., the subsets of items that could be accommo-
dated into a container, given the problem constraints.
The huge number of patterns that can be defined from
a given set of items makes the approach appropriate
for column-generation approaches only (Gilmore and
Gomory 1965, Baldacci and Boschetti 2007).
Beasley (1985) considered a formulation for

2D packings based on the discretization of the con-
tainer’s surface into p × q rectangles. The bottom-
left corner of each item was then placed on the
bottom-left corner of a rectangle. A similar repre-
sentation was introduced by Hadjiconstantinou and
Christofides (1995), except that instead of explicitly
partitioning the container into rectangles, they lim-
ited the set of coordinates each item could assume
to p and q values. In both cases, the number of vari-
ables grows with the accuracy of the discretization.
Therefore, such representations are principally used
to compute upper bounds through Lagrangian relax-
ation and subgradient optimization.
An approach often used for 2D-packing build-

ing consists of combining procedures designed for
monodimensional problems and so-called shelf (or
layer) methods (Chung et al. 1982, Berkey and Wang
1987). The items are first sorted and packed into
“shelves” with sizes equal to the width of the box. The

problem then reduces to solving a monodimensional
packing instance. Indeed, a 2D packing can be
obtained by placing the shelves into the containers
according to the solution of a monodimensional pack-
ing problem, where the size of the items equals the
depth of the shelves and the size of the monodi-
mensional containers equals the depth D of the
two-dimensional ones. The same approach can also
be used to build 3D packings. First, build two-
dimensional shelves by using any 2D algorithm and
then arrange them into the three-dimensional con-
tainers by solving a monodimensional packing prob-
lem, where the size of the items equals the height
of the shelves and the size of the containers equals
the height H . When the 2D shelves are also built
according to the shelf approach, the method is known
as wall-building (George and Robinson 1980, Pisinger
2002). The drawback of the shelf approach is that it
introduces guillotine cuts on the depth and height
of the two- and three-dimensional bins, respectively,
leading to the underutilization of the containers. Fig-
ure 1 illustrates 2D and 3D packings obtained by
means of the shelf approach.
Martello et al. (2000) defined corner points as the

nondominated locations where an item can be placed
into an existing packing. In two dimensions, corner
points are defined where the envelope of the items in
the bin changes from vertical to horizontal (the large
black dots in Figure 2(b)). Corner points on the three-
dimensional envelope can be found by applying the
two-dimensional algorithm for each distinct value of
the height of the bin defined by the lower and upper
terminal lines of each item (see Figure 2(a) for an
example of corner points in three dimensions). A cor-
ner point set can be computed in O�n2�. Martello et al.
(2000) used this idea to design a branch-and-bound
algorithm to verify whether a given set of items can
be packed into a container or not. den Boef et al.
(2005) showed that the algorithm to compute the cor-
ner points presented in Martello et al. (2000) may
miss some feasible packings. Martello et al. (2007)
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Figure 1 Shelf Packings in 2D and 3D



Crainic, Perboli, and Tadei: Extreme Point-Based Heuristics for Three-Dimensional Bin Packing
370 INFORMS Journal on Computing 20(3), pp. 368–384, © 2008 INFORMS

2 1 3

4

5
7

6

8
910

11

(a)
(b) y

x

Figure 2 Corner Points in 3D and 2D Packings

addressed this issue by providing a new version of
the procedure to compute the corner points, as well as
an updated version of the related branch-and-bound
algorithm.
The utilization of corner points in branch-and-

bound algorithms drastically reduces the number
of partial solutions explored. Constructive heuristics
using corner points can be inefficient in terms of con-
tainer utilization, however, because the definition of
corner points depends on the sequence of the accom-
modation of the items into the container. Consider,
for example, the packing depicted in Figure 2(b) and
item 11. According to the definition of the corner
points, one can add the item on any of the large black
dots. It is clear, however, that item 11 could also be
placed into one of the shaded regions, which the cor-
ner points do not allow us to exploit. The space lost in
three-dimensional packings could be significant, par-
ticularly when the sizes of the items vary a lot. Con-
sider, for example, Figure 2(a), where the placement of
the large item on top of the packing causes a large vol-
ume below it to become unavailable for future items.
A graph-theoretical approach for the characteriza-

tion of multidimensional packings has been proposed
by Fekete and Schepers (1997, 2001). The authors con-
sidered the relative positions of the items in a feasi-
ble packing and defined a graph describing the item
“overlapping” according to the projection of the items
on each orthogonal axis. More formally, let Gd�V �Ed�
be the interval graph associated to the dth axis. Each
vertex of Gd�V �Ed� is associated to an item i in the
container, and a nonoriented edge �i� j� between two
items i and j exists if and only if their projections
on axis d overlap (see Figure 3). The authors proved
necessary conditions on the interval graphs to define
a feasible packing. Combined with good heuristics
for dismissing infeasible subsets of items, this char-
acterization was used to develop a two-level tree
search (Fekete and Schepers 1997). According to com-
putational results, mainly limited to 2D problems,
this strategy outperforms previous methods. Unfortu-
nately, however, the method cannot handle additional
constraints on the packing, such as fixing the position
of one or more items. No direct comparison with the
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Figure 3 Packings and Associated Interval Graphs According to Fekete
and Schepers (1997)

branch and bound of Martello et al. (2007) has yet
been performed. The link between guillotine cuts and
interval graphs has been analyzed by Perboli (2002).

2.2. Solution Methods for the 3D-BP Problem
The first exact method for the 3D-BP problem, a two-
level branch and bound, was proposed by Martello
et al. (2000). The first search level assigned items to
bins. At each node of the first-level tree, a second-
level branch and bound was used to verify whether
the items assigned to each bin can be packed into it
using current corner points (§2.1). The authors tested
their procedure on six sets of instances with up to 90
items. Martello et al. (2007) improved this branch and
bound by fixing the procedure that verifies the corner
points.
The first lower bounds for the 3D-BP problem have

been presented by Martello et al. (2000). Their best
bound considered the items with width and height
larger than p and q, respectively, and determined the
subsets of items that, for geometric reasons, cannot be
placed side by side. A new class of lower bounds has
been introduced by Fekete and Schepers (1997). The
authors extended the use of dual-feasible functions,
initially introduced by Johnson (1973), to two- and
three-dimensional packing problems, including the
3D-BP problem. The most recent lower bound, due
to Boschetti (2004), introduces new dual-feasible func-
tions. The bound dominates the bounds by Martello
et al. and by Fekete and Schepers.
A tabu search algorithm for the 2D-BP problem was

proposed by Lodi et al. (1999a). The algorithm con-
sisted of two simple constructive heuristics to pack the
items into bins and a tabu search mechanisms to con-
trol the movement of items between bins. Two neigh-
borhoods were considered to try to move an item from
the weakest bin (i.e., the bin that appeared to be the
easiest to empty) into another. Because the construc-
tive heuristics produced guillotine packings, so did
the overall algorithm. The authors generalized this
approach to other variants of the BP problem, includ-
ing the one considered in this paper (Lodi et al. 2004).
Faroe et al. (2003) presented a guided local search

(GLS) heuristic for the 3D-BP problem. Starting with
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an upper bound on the number of bins obtained by
a greedy heuristic procedure, the algorithm iteratively
decreased the number of bins, each time searching for
a feasible packing using the GLS method. The process
terminated when either a given time limit was reached
or the current solution matched a precomputed lower
bound. Computational experiments were reported for
2D and 3D instances with up to 200 items.
Two constructive heuristics have been developed

and tested for the 3D-BP problem by Martello et al.
(2000). The first algorithm, called S-Pack, was based
on a layer-building principle derived from the shelf
approaches described in §2.1. The second heuristic,
denoted MPV-BS, repeatedly filled one bin after the
other by means of the branch-and-bound algorithm
for the single container presented by the authors in
the same paper. To reduce the computational time of
the algorithm, the branch and bound is truncated by
limiting the width of the tree.
Lodi et al. (2002b) presented a new shelf-based

heuristic for the 3D-BP, called Height first—Area sec-
ond (HA). The algorithm was based on constructing
two solutions and selecting the best. To obtain the first
one, items were partitioned into clusters according to
their height and a series of layers were obtained from
each cluster. The layers were then packed into bins
using the branch-and-bound algorithm by Martello
and Toth (1990) for the 1D-BP problem. The second
solution was obtained by ordering the items by non-
increasing area of their base and building new layers.
As previously, layers were packed into bins by solv-
ing a 1D-BP problem. HA is the constructive heuristic
that currently obtains the best results on the bench-
mark test problem instances.
Notice that none of the reviewed constructive heu-

ristics has a polynomial computational effort. They
actually use a branch-and-bound algorithm to pack
the shelves (S-Pack and HA) or build the accommo-
dation (S-Pack).

3. Extreme Points: An Efficient Rule
for the Placement of Items in
Three Dimensions

The main contribution of this paper is the introduc-
tion of a new accurate and efficient procedure to place
items inside a container. The procedure is based on
the concept of extreme points (EPs). The extreme points
idea extends the corner points concept. EPs provide
the means to exploit the free space defined inside a
packing by the shapes of the items already in the con-
tainer. Figure 4 illustrates EPs in 3D and 2D packings.
The basic idea of the EPs is that when an item k

with sizes wk, dk, and hk is added to a given pack-
ing and is placed with its left-back-down corner in
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Figure 4 Example of Definition of Extreme Points in 3D and
2D Packings

position �xk� yk� zk�, it generates a series of new poten-
tial points, the EPs, where additional items can be
accommodated. The new EPs are generated by pro-
jecting the points with coordinates �xk + wk�yk� zk�,
�xk� yk+dk� zk�, and �xk� yk� zk+hk� on the orthogonal
axes of the container. Figure 5 illustrates the concept.
Given a packing and the list 3DEPL of extreme

points defined by the items already in the packing,
Algorithm 1 finds the new EPs that must be added to
the list following the placement of item k in position
(xk, yk, zk). The main idea of Algorithm 1 is as follows
(to facilitate the reading of the paper, the pseudocodes
of all algorithms are presented in the appendix):
• If the container is empty, the item is placed in

position �0�0�0�, which generates three EPs in posi-
tions �wk�0�0�, �0�dk�0�, and �0�0�hk�;
• Otherwise, the item is placed in position (xk, yk,

zk), and new EPs are obtained by projecting
—Point �xk +wk�yk� zk� in the directions of the

Y and Z axes,
—Point �xk� yk+dk� zk� in the directions of the X

and Z axes, and
—Point �xk� yk� zk+hk� in the directions of the X

and Y axes.

Figure 5 EPs Defined by an Item (the EPs Are the Triangles)
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Each point is projected on all items lying between
item k and the wall of the container in the respective
direction.
• If there is more than one item on which a point

can be projected, the algorithm chooses the nearest
one.
Algorithm 1 updates the EPs list, called 3DEPL,

every time an item is added and assumes knowl-
edge of the EPs previously generated by the existing
packing. It can therefore be used within constructive
heuristics, where items are added to each container
one after the other. The computational complexity of
the updating procedure is given by Theorem 1.

Theorem 1. Given a 3D-BP problem instance and its
set of items I , a subset of items Ij̄ ⊆ I already accommodated
into a container j̄ , the corresponding list 3DEPL of extreme
points ordered by nonincreasing values of their positions on
Z, Y , and X axes, and an item k that can be accommodated
into the container (i.e., for which one already knows the
point where it can be placed without overlapping any other
item in the container), the time complexity of Algorithm 1
is O��Ij̄ ��.
Proof. Given item k, Algorithm 1 generates six

new EPs. For each item in Ij̄ , one may verify in con-
stant time whether the position of the new extreme
points must be updated. Thus, this verification phase
is O��Ij̄ ��. The new EPs are added to the list 3DEPL.
Because the list 3DEPL is ordered, the insertion of the
six new EPs requires 6 ∗ ln��Ij̄ �� operations, and the
time complexity of the overall process is O��Ij̄ � + 6 ∗
ln��Ij̄ ���=O��Ij̄ ��. �

Notice that because �Ij̄ � is at most equal to n, where
n= �I � is the total number of items in the instance, the
overall computational effort of Algorithm 1 is O�n�.

4. New EP-Based Constructive
Heuristics for the 3D-BP Problem

The first fit decreasing (FFD) and the best fit decreasing
(BFD) procedures are constructive heuristics for the
1D-BP problem. After an initial sorting of the items by
nonincreasing order of their volumes, the two heuris-
tics differ in how items are loaded. FFD heuristics load
the ordered items one after the other into the first bin
where they fit. BFD heuristics try to load each item in
the best bin, i.e., the bin which, after loading the item,
has the maximum free volume, defined as the bin vol-
ume minus the sum of the volumes of the items it con-
tains. Both heuristics create a new bin when the item
cannot be accommodated in the existing bins. Despite
their simplicity, the FFD and BFD heuristics offer good
performances for the 1D-BP problem, and adapting
them to the 3D-BP problem appears to be an interest-
ing perspective (Martello and Toth 1990).
Unfortunately, extending the FFD and BFD heuris-

tics to the 3D-BP problem is far from trivial. On the

one hand, although for the 1D-BP case the ordering
is done considering the unique attribute character-
izing both items and bins—i.e., their volume—more
choices exist in the 3D-BP context. One may thus con-
sider sorting items according to their width, height,
or depth, as well as, derived from these attributes,
according to their volume or the areas of their differ-
ent faces. Consequently, the definition of the best bin
in the BFD heuristic is not unique for the 3D-BP prob-
lem. On the other hand, although the item accommo-
dation does not need to be considered in the 1D-BP
problem, a 3D packing may vary significantly accord-
ing to how items are placed inside the bin, even when
the ordering of the items and the best-bin selecting
rules are not changed.
In the following, we propose new constructive

heuristics, denoted EP-FFD and EP-BFD, that extend
the FFD and BFD heuristics, respectively, and place
items into bins by using the extreme points. Both
heuristics require the initial ordering of the items, and
sorting rules are described in §4.1. The EP-FFD and
EP-BFD heuristics are then presented in §§4.2 and 4.3,
respectively.

4.1. Sorting the Items
Different versions of the EP-FFD and EP-BFD heuris-
tics can be defined by changing the ordering of the
items. We tested several ordering rules. In the fol-
lowing, we present only those that experimentally
yielded the best results.
• Volume-Height: Items are sorted by nonincreasing

values of their volume �wi × di × hi�. Items with the
same volume are sorted by nonincreasing values of
their height hi.
• Height-Volume: Items are sorted by nonincreasing

values of their height hi. Items with the same height
are sorted by nonincreasing values of their volume
�wi× di×hi�.
• Area-Height: Items are sorted by nonincreasing

values of their base area �wi × di�. Items with the
same area are sorted by nonincreasing values of their
height hi.
• Clustered Area-Height: Because two items rarely

have the same base area, the second sorting criterion
(“Height”) of the previous rule is not often used. To
build more regular packings, in the clustered version
of the area-height ordering rule, the bin area W ×D
is separated into clusters defined by the intervals:

Aj�� =
[
�j − 1�×WD

100
��
j ×WD
100

�

]
�

where W and D are the width and the depth of
the bin, respectively, and � ∈ �1�100�. Items are then
assigned to clusters according to their base area, and
clusters are ordered by decreasing values of j . Items
assigned to the same cluster are sorted by nonincreas-
ing values of their height hi.
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• Height-Area: Items are sorted by nonincreasing
values of their height. Items having the same height
are sorted by nonincreasing values of their base area
�wi× di�.
• Clustered Height-Area: This rule is a variant of the

previous one where, given a value � ∈ �1�100�, the
height H of the bin is separated into clusters defined
by the intervals:

hj�� =
[
�j − 1�×H

100
��
j ×H
100

�

]
�

Items are then assigned to clusters according to their
height and clusters are ordered by decreasing values
of j . Items assigned to the same cluster are sorted by
nonincreasing values of their base area �wi× di�.
4.2. Extreme Point First Fit Decreasing Heuristics
The extreme point first fit decreasing (EP-FFD) heuristic
sorts the items according to a rule that can be exter-
nally specified. First, the algorithm verifies whether
the item dimension is compatible with the bin size
and discards it if it is not. A compatible item is loaded
into the first existing bin where it fits; a new bin is
created if the item cannot be loaded into any of the
existing bins. To verify whether an item can be accom-
modated into a bin, the EP-FFD heuristics places it
on the EPs of the existing packing. An item can be
accommodated on an EP if, after placing its left-back-
down corner on it, it does not overlap any other item
previously accommodated into the bin. If an item can
be placed on more than one EP inside the bin, the
one with the lowest z, y, x coordinates (in this order)
is chosen. Every time an item is added, the EP-FFD
heuristic is used to update the list of the EPs.

Theorem 2. Given a 3D-BP problem instance I with
n items, Algorithm EP-FFD has a time complexity of
O�n3�.

Proof. The EP-FFD heuristic tries to put each item
into one of the existing bins. It thus verifies, for each
EP in each bin, whether the item can be accommo-
dated on the given EP. Recall that each item pre-
viously accommodated into a bin generates at most
six EPs (Algorithm 1). Consequently, assuming there
are m< n items already placed into the bins, adding
a new item k to the current solution requires the eval-
uation of at most 6m EPs. The evaluation consists of
cycling on the items already into the bin and verifying
whether item k overlaps any of them. This task can be
accomplished in �Ib�, where Ib is the set of items pre-
viously accommodated in the bin b. It is clear that the
worst case occurs when the algorithm has to check all
the m items, and thus, in the worst case, 6m2 steps are
required. When the item k cannot be placed in one of
the existing bins, a new bin is created, and the item is
accommodated into it in constant time.

Let b̄ be the bin where item k has been accommo-
dated. According to Theorem 1, to update the EP list
of b̄ requires m steps in the worst case (i.e., when all
the m items have been accommodated into the same
bin). Thus, at most O�6m2 + m� steps are required
to accommodate a new item k. Because the process
is repeated for each item in I , Algorithm EP-FFD
takes O�n3�. �

4.3. Extreme Point Best Fit Decreasing Heuristics
The extreme point best fit decreasing (EP-BFD) heuristic
sorts the items according to a rule that can be exter-
nally specified. First, the algorithm verifies whether
the item dimension is compatible with the bin size
and discards it if it is not. A compatible item is loaded
on the EP of the existing bin that maximizes a merit
function measuring the best bin and the best position
where the item can be accommodated. Recall that an
item can be accommodated on an EP if, after placing
its left-back-down corner on it, it does not overlap
any other item previously accommodated into the bin.
For each EP where the item can be accommodated, a
merit function is computed. If an item can be placed on
more than one EP, the one with the best merit func-
tion value is chosen. If the item cannot be loaded into
any of the existing bins, a new bin is created. Every
time an item is added, Algorithm 1 is used to update
the list of the EPs of the bin.
Consider a bin b and an item k, of dimensions wk,

dk, and hk, to be loaded into the bin b. Let e repre-
sent an EP in b with coordinates �xe� ye� ze�. We tested
several merit functions fb:
• Minimize the free volume after accommodating the

item (FV). This is the merit-function definition that is
most similar to the one used in the 1D-BP case. We
place the item into the bin that, once the item is in,
displays the minimum amount of volume left. The
merit function is defined as follows:

fb = Vb −
∑
i∈b
vi− vk�

where Vb is the volume of the bin b, and vi is the item
volume. The main disadvantage of this merit function
is that it does not use the information given by the
accommodation of the items inside the bin. Moreover,
each EP in the bin has the same merit value.
• Minimize the maximum packing size on the X and

Y axes (MP). Each item is placed on the position that
minimizes the size increase (if any) on the X and Y
axes of the resulting accommodation. Formally, the
merit function is defined as follows:

—the X axis

fb =


�xe+wk−WMP� if xe+wk >WMP

0 otherwise'
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—the Y axis

fb =


�ye+ dk−DMP� if ye+ dk >DMP
0 otherwise�

where WMP and DMP are the dimensions of the mini-
mum box envelope of the items accommodated before
k in the bin.
• Level the packing on X and Y axes (LEV). This rule

is a modified version of the previous one. It aims to
level the packing on the X and Y axes; i.e., if the item
added increases the packing size, the EP yielding the
minimum increase is chosen. Otherwise, we consider
the EP that minimizes the distance between the side
of the minimum box envelope of the packing and the
side of the accommodated item. In this case, the merit
function that determines the best place for the accom-
modation is

—the X axis

fb =


�xe+wk−WMP�C if x+wk >WMP

�WMP− �xe+wk�� otherwise'

—the Y axis

fb =


�ye+ dk−DMP�C if ye+ dk >WMP

�DMP− �ye+ dk�� otherwise�

where C > max)W�D* is a high penalty on the in-
crease of the dimensionsWMP and DMP due to the new
item.
• Maximize the utilization of the EPs’ residual space.

The residual space (RS) measures the free space avail-
able around an EP. Roughly speaking, the RS of an
EP is the distance, along each axis, from the bin edge
or the nearest item. The nearest item can be differ-
ent on each axis. More precisely, when an EP is cre-
ated, its residual space on each axis is set equal to
the distance from its position to the side of the bin
along that axis (see Figure 6(a)). Every time an item
is added to the packing, the RS of all EPs are updated
by means of Algorithm 2. Figure 6(b) illustrates the
concept. For “complex” packings, the RS gives only
an estimate of the effective volume available around
the EPs and, thus, potential overlaps with other items
have to be verified when accommodating a new item
on the chosen EP.
The merit function puts an item on the EP that min-

imizes the difference between its RS and the item
dimension:

fb =
[
�RSxe −wk�+ �RSye − dk�+ �RSze −hk�

]
�

where RSxe , RS
y
e , and RS

z
e are the RSs on X, Y , and Z

axes, respectively.
When item k is added to the packing, the RSs are

updated (see Algorithm 2 in the appendix) in O�n�.

2 2

1

1

3

3

4

(a) (b) yy

xx
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space of
EP 2

Updated residual
space of EP 2

Figure 6 Example of Residual Space Definition

Theorem 3. Given an instance I of the 3D-BP problem
with n items, the EP-BFD heuristic has a time complexity
of O�n3 + n ∗max)n�O�UMF �*�, where O�UMF � is the
complexity of the function that updates the merit function
relative to a bin.

Proof. The EP-BFD heuristic tries to place each
item into an existing bin. It verifies, for each EP of
each bin, whether the item can be accommodated
on it. Each item previously accommodated in the
bin generates at most six EPs (Algorithm 1). Conse-
quently, adding the item k to the bin b that already
contains �Ib� items requires the verification of 6�Ib� EPs.
The verification consists of cycling on the items pre-
viously accommodated into the bin to which the EP
belongs and testing whether the item k overlaps any
other item in the packing. This task can be accom-
plished in �Ib� time. If m< n items are already in the
bin, one must verify at most all the m items, requiring
6m2 steps to try to place item k on all the existing EPs.
When the item cannot be placed into the existing bins,
a new bin is allocated, and the item is accommodated
into it in constant time.
Let b̄ be the bin where item k has been accommo-

dated. The list of the EPs of b̄ is then updated in O�m�
(Theorem 1), whereas updating the merit function of
the items loaded in b̄ requires O�UMF � time. At most
O�6m2 +max)m�O�UMF �* steps are thus required to
accommodate the item k, and because the process is
repeated for each item in I , Algorithm EP-BFD takes
O�n3+n ∗max)n�O�UMF �*�. �

Lemma 1. Given an instance of the 3D-BP problem,
Algorithm EP-BFD has a time complexity of O�n3� when
it embeds one of the merit functions presented in §4.3.

All the merit functions can be updated in constant
time, with the exception of the one based on resid-
ual space, which requires O�n� (the residual space of
each EP must be updated—Algorithm 2). Thus, the
time complexity of the UMF procedure is O�n� for
the merit functions presented in §4.3, and Algorithm
EP-BFD is O�n3� by Theorem 3.
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5. Computational Results
In this section, we analyze the computational results
according to two different viewpoints. Subsection 5.2
is dedicated to the analysis of the EP concept through
a comparison of the constructive heuristics using the
CPs and the EPs, respectively. Second, the results of
the EP-FFD and EP-BFD heuristics are discussed. We
start by comparing different versions of the EP-FFD
and EP-BFD heuristics obtained by changing the sort-
ing rules (§§5.3 and 5.4). A composite heuristic using
the most effective sorting rules, denoted the C-EPBFD
heuristic, is proposed in §5.5. The performance of the
C-EPBFD heuristic is compared in §5.6 to that of all
the existing constructive heuristics, as well as to that
of more complex methods such as branch-and-bound
and metaheuristic algorithms for the 3D-BP problem.
Moreover, the C-EPBFD heuristic is also applied to
the 2D version of the BP problem, its results being
compared to those of the best algorithms explicitly
designed for the 2D-BP problem.

5.1. Test Problems
Experiments were carried out on standard benchmark
instances for the 2D and 3D cases.

5.1.1. 3D Instances. The instances used for the
3D-BP problem came from Martello et al. (2000). For
Classes 1 to 4, the bin size is W =H =D = 100� and
the following five types of items are considered:
• Type 1: wj uniformly random in �1� 12W�, hj uni-

formly random in � 23H�H�, dj uniformly random in
� 23D�D�;
• Type 2: wj uniformly random in � 23W�W�, hj uni-

formly random in �1� 12H�, dj uniformly random in
� 23D�D�;
• Type 3: wj uniformly random in � 23W�W�, hj uni-

formly random in � 23H�H�, dj uniformly random in
�1� 12D�;
• Type 4: wj uniformly random in � 12W�W�, hj uni-

formly random in � 12H�H�, dj uniformly random in
� 12D�D�;
• Type 5: wj uniformly random in �1� 12W�, hj uni-

formly random in �1� 12H�, dj uniformly random in
�1� 12D�.
For each of the first five classes, the items are:
• Class 1: type 1 with probability 60%, type 2, 3,

4, 5 with probability 10% each;
• Class 2: type 2 with probability 60%, type 1, 3, 4,

5 with probability 10% each;
• Class 3: type 3 with probability 60%, type 1, 2, 4,

5 with probability 10% each;
• Class 4: type 4 with probability 60%, type 1, 2, 3,

5 with probability 10% each;
• Class 5: type 5 with probability 60%, type 1, 2, 3,

4 with probability 10% each.

Classes from 6 to 8 were generated as follows:
• Class 6: wj , hj , and dj uniformly random in �1�10�

and W =H =D= 10;
• Class 7: wj , hj , and dj uniformly random in �1�35�

and W =H =D= 40;
• Class 8: wj , hj , and dj uniformly random in

�1�100� and W =H =D= 100.
For each class (i.e., 1, 4, 5, 6, 7, and 8), we consid-

ered instances with a number of items equal to 50,
100, 150, and 200. Given a class and an instance size,
we generated 10 different problem instances based on
different random seeds. Bins are cubic in all instances.
Following the experimental protocol of Martello et al.
(2000), Faroe et al. (2003), and Crainic et al. (2008), we
did not consider Classes 2 and 3 because these have
properties similar to those of Class 1.

5.1.2. 2D Instances. For the 2D-BP problem, we
considered 10 classes of problems from Berkey and
Wang (1987) and Martello and Vigo (1998) (the code of
the generator and the instances are available at http://
www.or.deis.unibo.it/research.html). The first six
classes havebeenproposedbyBerkey andWang (1987):
• Class 1: wj and hj uniformly random in �1�10�

and W =H = 10;
• Class 2: wj and hj uniformly random in �1�10�

and W =H = 30;
• Class 3: wj and hj uniformly random in �1�35�

and W =H = 40;
• Class 4: wj and hj uniformly random in �1�35�

and W =H = 100;
• Class 5: wj and hj uniformly random in �1�100�

and W =H = 100;
• Class 6: wj and hj uniformly random in �1�100�

and W =H = 300.
In each class, all the item sizes were generated

within the same interval. Martello and Vigo (1998)
have proposed more realistic test cases where items
are classified into four types:
• Type 1: wj uniformly random in � 23W�W�, hj uni-

formly random in �1� 12H�;
• Type 2: wj uniformly random in �1� 12W�, hj

uniformly random in � 23H�H�;
• Type 3: wj uniformly random in � 12W�W�, hj uni-

formly random in � 12H�H�;
• Type 4: wj uniformly random in �1� 12W�, hj uni-

formly random in �1� 12H�.
The bin sizes are W = H = 100 for all test classes,

while the items are defined according to the following
rules:
• Class 7: type 1 with probability 70%, type 2, 3, 4

with probability 10% each;
• Class 8: type 2 with probability 70%, type 1, 3, 4

with probability 10% each;
• Class 9: type 3 with probability 70%, type 1, 2, 4

with probability 10% each;
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Table 1 Corner vs. Extreme Points Performance for Different FFD Heuristics

Height Volume Area Height Clustered area Clustered height
Class Bins n No sort (%) volume (%) height (%) height (%) area (%) height (%) area (%)

1 100 50 −11�59 −1�30 −8�02 −3�36 −3�23 −2�10 −3�50
100 −7�30 −3�00 −6�98 −2�08 −3�01 −1�06 −2�84
150 −9�05 −2�93 −5�65 −2�49 −3�40 −3�29 −3�83
200 −4�44 −3�33 −5�75 −3�62 −3�16 −2�76 −3�15

4 100 50 −1�00 −0�33 −0�66 0�00 −0�33 0�00 0�00
100 −1�47 −0�17 −0�99 0�00 −0�17 0�00 0�00
150 −0�23 −0�11 −0�90 0�00 −0�11 0�00 0�00
200 0�00 0�00 −0�83 0�00 −0�17 0�00 0�00

5 100 50 −10�62 −4�26 −10�62 −4�17 −4�26 −3�41 −5�62
100 −9�14 −2�92 −11�44 −4�73 −3�49 −3�11 −4�94
150 −8�61 −1�72 −10�55 −7�20 −2�59 −7�08 −4�50
200 −8�99 −4�06 −10�50 −6�94 −3�16 −5�63 −6�31

6 10 50 −10�69 −2�59 −13�53 −7�02 −1�80 −5�56 −4�63
100 −15�35 −7�46 −13�49 −9�42 −5�56 −8�41 −6�57
150 −11�50 −6�16 −9�78 −8�88 −4�60 −6�25 −7�08
200 −9�39 −5�43 −7�37 −9�20 −5�90 −7�42 −7�11

7 40 50 −16�07 −9�78 −15�18 −8�99 −10�99 −7�23 −4�88
100 −17�28 −9�82 −11�05 −15�57 −11�88 −11�84 −12�08
150 −18�83 −10�00 −22�35 −19�47 −9�13 −14�57 −15�58
200 −14�00 −9�51 −11�66 −16�03 −8�72 −13�79 −13�24

8 100 50 −12�12 −3�67 −4�84 −6�48 −4�55 −4�00 −5�00
100 −12�05 −4�13 −12�40 −4�67 −5�02 −6�28 −4�37
150 −15�18 −6�44 −14�24 −10�51 −5�14 −10�60 −8�24
200 −14�25 −7�07 −15�75 −13�40 −7�12 −11�55 −9�48

• Class 10: type 4 with probability 70%, type 1, 2, 3
with probability 10% each.
For each class, we considered instances with a num-

ber of items equal to 20, 40, 60, 80, and 100. For each
class and item size, 10 instances were generated.
We directly applied our heuristics for the 3D-BP

problem to these 2D instances by adapting them as
follows:
• The X and Y dimensions of the three-dimen-

sional instances were set to the X and Y sizes of the
two-dimensional ones, respectively;
• The Z dimensions of the items of the three-

dimensional instances were set equal to the Z size of
the three-dimensional bin.

5.2. An Extreme vs. Corner Points Comparison
To compare the CP and EP concepts, we developed a
version of the FFD heuristics where the CPs are used
for the placement of the items instead of the EPs.
We tested the CP-FFD and EP-FFD heuristics using

the sorting rules presented in §4.1, as well as the no-
sorting rule, according to which items are not sorted.
The last rule is used, for example, for online problems,
when one does not know in advance the set of items
to load. Seven versions of the CP-FFD and the EP-FFD
heuristics were thus obtained.
Table 1 displays the performance gap measures

comparing the various heuristics using the EPs and
the CPs. The gaps were computed as �meanEP −
meanCP�/meanCP ∗ 100, where meanEP and meanCP were

the mean values obtained by the given FFD heuris-
tics over 10 instances using the EPs and the CPs,
respectively. A negative value thus corresponds to
better results of the EP-based version of the heuris-
tics compared to the results of the CP-based version.
Column 1 gives the instance type, bin dimensions,
and the number of items. Column 2 presents the
mean results when no sorting algorithm was used.
Columns 3–6 present the mean results when height-
volume, volume-height, area-height, and height-area
sorting rules were used, respectively. The results of
the clustered area-height and height-area sorting rules
are reported in Columns 7 and 8, respectively. Com-
putational times were negligible and, thus, are not
reported.
The results displayed in Table 1 seem to indi-

cate that using EPs allows us to better exploit the
available volume of the bin and support the claim
that EP-based FFD heuristic procedures are more effi-
cient than CP-based ones. Differences in performance
among problem classes are mainly due to the different
relationships between the dimensions of items and
bins. When items are big, there are not many possibil-
ities of placing them side by side, and consequently,
using EPs or CPs does not impact the performance
as much. The improvement yielded by using the EPs
is more significant when the items are small com-
pared to the bin size. This is the case, for example,
for Class 5, which includes the instances considered
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Table 2 Results of the EP-FFD Heuristic

Height Volume Area Height Clustered area Clustered height
Class Bins n No sort volume height height area height area

1 100 50 14�6 15 14�4 14�4 15 14 13�8
100 29�2 29�2 29�5 28�3 29 27�9 27�4
150 40�1 39�9 40�3 39�2 39�8 38�1 37�7
200 55�9 55�6 55�7 53�2 55�1 53 52�3

Class total 139�8 139�7 139�9 135�1 138�9 133�0 131�2

4 100 50 29�7 30�1 29�9 30 30 29�5 29�5
100 60�2 59�6 60�4 59�7 59�6 59 59
150 88�5 88�3 88�6 88�4 88�3 86�9 86�9
200 119�9 120�1 119�6 120�3 120 119 118�9

Class total 298�3 298�1 298�5 298�4 297�9 294�4 294�3

5 100 50 10�1 9 10 9�2 9 8�5 8�4
100 18�1 16�7 17�8 16�1 16�6 15�7 15�4
150 24�4 22�9 24�5 21�9 22�6 21 21�1
200 32�5 30�7 32�6 29�5 30�5 28�5 28�2

Class total 85�1 79�3 84�9 76�7 78�7 73�7 73�1

6 10 50 11�7 10�9 11�7 10�6 10�9 10�2 10�1
100 21�7 21�2 22 20�2 20�5 19�6 19�8
150 33 31�8 34�2 30�8 31 29�9 30�2
200 44�4 41�5 44 39�5 39�8 38�6 38�8

Class total 110�8 105�4 111�9 101�1 102�2 98�3 98�9

7 40 50 9�4 8�2 9�3 8�1 8�1 7�6 7�7
100 15�9 14�6 15�6 14�1 14�1 13�4 13�3
150 19�3 19�2 19�7 18�2 18�9 16�9 16�9
200 30 28�1 30�2 26�2 27�2 25 24�9

Class total 74�6 70�1 74�8 66�6 68�3 62�9 62�8

8 100 50 11�6 10�5 11�6 10�1 10�5 9�6 9�5
100 22 20�9 22�1 20�3 20�8 19�4 19�7
150 28�5 27�4 28�4 26�4 27�7 25�4 25�5
200 35�4 33�9 35�4 32�2 33�9 31�4 31�5

Class total 97�5 92�7 97�5 89�0 92�9 85�8 86�2

Total 806�1 785�3 807�5 766�9 778�9 748�1 746�5

to be the most difficult to solve. Finally, notice that
when no initial ordering is imposed on the items, as
in online packing problems, the number of bins can
be reduced by up to 18%.

5.3. Comparing the Different Versions of the
EP-FFD Heuristic

We now present the results of extensive computa-
tional testing of the EP-FFD heuristics using different
sorting rules. The issue of parameter tuning for best
results is also addressed.
The results are summarized in Table 2, in which

the columns have the same meaning as those of
Table 1 and each value is the average result of 10
instances belonging to the same class. For each class
of instances, the row Class total reports the number
of bins obtained as the sum of the results of the
class instances. The last row of the table displays the
total number of bins used, computed as the sum of
the Class total values in the column. The results of
the clustered area-height and height-area sorting rules

were obtained cycling on the same instance for all the
values of the cluster size � ∈ �1�100� and considering
the best solution among all the � values. Similarly to
the previous set of experiments, computational times
are negligible and, thus, are not reported. In general,
EP-FFD runs in less than 10−2 seconds for the non-
clustered versions and in less than half a second for
the clustered ones.
The experimental results indicate that the clustered

area-height and the clustered height-area are the best
sorting rules. These rules are complementary, in the
sense that they yield their best results on differ-
ent instances, while outperforming the corresponding
versions without clustering. This follows from the fact
that the sorting rules without clustering introduce an
ordering based mainly on the first parameter (e.g., the
height in the height-area), neglecting the others. Clus-
tering, on the other hand, allows us to refine the order
implied by the first criterion. Consider, for example, a
set of items that are equal in height but have different
base areas. The height-area sorting rule would pack
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Figure 7 Total Number of Bins vs. �: Clustered Area-Height with the
EP-FFD Heuristic

all these items together even though they are dissimi-
lar in base area. The clustered version avoids this sit-
uation by using the second sorting parameter to build
more homogeneous packings of items that are almost
equal in height and have similar base areas.
Clustered area-height and height-area sorting rules

require tuning the � parameter. Figures 7 and 8
display the results of the EP-FFD heuristic with
the clustered area-height and clustered height-area
sorting rules, respectively, for varying values of �. In
both graphs, the horizontal axis represents the � val-
ues, whereas the sum of the bins built for all 240
benchmark instances is mapped on the vertical axis.
The results indicate that the EP-FFD heuristic with
clustered area-height obtains its best results for � ∈
�5�25�, whereas the EP-FFD procedure with clustered
height-area has two optimality regions, one around
� = 20 and the other around � = 55. On the other
hand, EP-FFD performs poorly when � is greater
than 60, independent of the sorting rule. This is not
surprising, considering that for � > 50, the cluster-
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Figure 8 Total Number of Bins vs. �: Clustered Height-Area with the
EP-FFD Heuristic

ing splits the items into two clusters only. Moreover,
while � is increasing, the number of items in the first
cluster increases and the sorting mainly applies the
secondary rule.
The average values displayed in Table 2 seem to

indicate that a better performance could be achieved
by taking the best of the results obtained by the
EP-FFD heuristic with clustered area-height and with
clustered height-area. This is not true in general, as
the comparison of the results instance by instance
can demonstrate. However, this approach offers the
best compromise between accuracy and computation
effort, and should be used.

5.4. Comparing the Different Versions of the
EP-BFD Heuristic

We now turn to the results of the extensive computa-
tional experiments of the 28 versions of the EP-BFD
heuristic. These variants are obtained combining the
merit functions of §4.3 with and without the various
item-sorting rules.
The general trends are illustrated by the results

obtained on instances with 200 items displayed in
Table 3, whose columns have the same meaning as
those of Table 1. Given an instance class, each row
reports the results obtained by means of FV, MP,
LV, and RS merit functions. The row Total displays,
for each combination of merit function and sorting
rule, the total number of bins obtained as the sum
of the results of the class instances for that combina-
tion. Each value is the average result of 10 instances
belonging to the same class. The results of the clus-
tered area-height and height-area sorting rules were
obtained cycling on the same instance for all the val-
ues of � ∈ �1�100� and considering the best solution
among all the � values. Similarly to the previous set of
experiments, computational times are negligible and,
thus, are not reported. In general, EP-BFD runs in less
than 10−2 seconds for the nonclustered versions and
in less than half a second for the clustered versions.
The experimental results indicate that the EP-BFD

heuristic providing the best results is using the resid-
ual space criterion. Indeed, using this criterion, one
best emulates the monodimensional BFD heuristics.
Consider the residual space of each EP as a “virtual
bin.” Placing each item on the EP for which the dif-
ference between its dimensions and the RS is min-
imal, we reduce the waste of space resulting from
the splitting of the bin volume due to the loading
of the item. On the other hand, the minimization of
the free volume, which seems to exactly reproduce
the rule applied in monodimensional bin packing,
yields results that are far from those of the EP-FFD
procedure.
Similarly to the calibration of the EP-FFD heuris-

tic and to reduce the number of iterations, we ana-
lyzed the behavior of the EP-BFD heuristic relative to
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Table 3 Different Versions of EP-BFD on 200-Item Problems

Height Volume Area Height Clustered area Clustered height
Class Bins Merit No sort volume height height area height area

1 100 FV 64�3 66 64�3 54�2 65�8 54�1 53�9
MP 55�8 55�1 56 53�2 55�2 52�9 52�3
LEV 55�9 55�1 56 53�2 55�2 52�9 52�3
RS 55�4 55�1 55�4 53�3 55 52�6 51�9

4 100 FV 126�7 127�7 126�3 122�9 127�5 121�7 121
MP 119�9 120�2 119�6 120�3 120 119 118�9
LEV 119�9 120�2 119�6 120�3 120 119 118�9
RS 119�6 119�8 119�4 119�8 119�8 119 118�9

5 100 FV 35�6 34�5 35�3 29�9 34�9 29�2 29�5
MP 32�3 30�6 32�3 29�5 30�5 28�5 28�2
LEV 32�5 30�8 32�6 29�5 30�6 28�5 28�2
RS 31�9 30�7 32�6 29�2 30�3 28�4 28�1

6 10 FV 49�3 47�8 48�9 41�4 45�8 40�2 41�2
MP 44�4 41�7 44�2 39�3 39�9 38�6 39�1
LEV 44�6 41�8 44�5 39�3 39�9 38�6 39�1
RS 44�3 41 43�5 39�1 39�7 38�6 38�8

7 40 FV 34�2 31�2 34�3 27�2 30�5 26�3 26�4
MP 30�3 27�6 30�1 26�3 27�4 25 24�8
LEV 30�3 27�7 30�5 26�3 27�5 25 24�8
RS 30�5 27�2 30�6 26�1 26�3 25�1 25�1

8 100 FV 36�1 36�2 36�2 34�2 36 32�6 32�8
MP 35�5 34�3 35�6 32�4 34 31�4 31�4
LEV 35�4 34�3 35�5 32�3 34 31�4 31�3
RS 35�5 33�5 35�2 32�2 33�2 31�3 31�4

Total FV 346�2 343�4 345�3 309�8 340�5 304�1 304�8
MP 318�2 309�5 317�8 301 307 295�4 294�7
LEV 318�6 309�9 318�7 300�9 307�2 295�4 294�6
RS 317�2 307�3 316�7 299�7 304�3 295 294�2

the � parameter. Given the results presented earlier in
this section, we focused on the variants with residual
space merit function and clustered area-height and
clustered height-area sorting rules. For the former, best
results were obtained for � ∈ �5�15�, whereas the lat-
ter had two optimality regions, one at � ∈ �21�24� and
another at � ∈ �50�57�. In both cases, and for the same
reasons indicated for the EP-FFD heuristic, the EP-BFD
procedure performs badly for � greater than 60. Fig-
ures 9 and 10 illustrate these results, where the values
of � are on the horizontal axis, whereas the vertical
axis corresponds to the values of the sum of the bins
built for all 240 benchmark instances.
The versions of the EP-BFD heuristic with clus-

tered item-sorting rules outperform on average the
corresponding versions without clustering. This is
similar to the performance of the EP-FFD heuristic.
Unlike the latter, however, the EP-BFD heuristic with
clustered sorting and residual space merit function
also yields the best results, compared to unclus-
tered versions, when considering the single problem
instances from each class. It is not possible, however,
to establish a clear dominance between the two clus-
tered versions. Finally, comparing the FFD and BFD
approaches based on the mean results, one observes

a small gap between the EP-FFD heuristic and the
EP-BFD procedure with residual space.

5.5. Results for the Composite Heuristics
Let us define two composite heuristics. The first, iden-
tified as C-EPFFD, applies successively the EP-FFD
heuristic with the two clustered sorting rules, cycling
on the different values of �, and selects the best
result. The second is identified as C-EPBFD and fol-
lows the same procedure using the EP-BFD heuristic.
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Figure 10 Total Number of Bins vs. �: EP-BFD Heuristic with Clustered
Height-Area

The results displayed in the previous tables provide
the means to evaluate the relative performance of the
two composite heuristics and show that C-EPBFD
is always able to find solutions at least as good as
those obtained by C-EPFFD. We therefore retain the
C-EPBFD composite heuristics to address 3D-BP and
2D-BP problems.

5.6. The C-EPBFD Heuristic vs. State-of-the-Art
Algorithms

We compared the performances of the C-EPBFD
heuristic to those of the other constructive heuristics
presented in §2, as well as to those of more com-
plex solution methods, metaheuristics and branch-
and-bound-based algorithms. We also applied the
C-EPBFD heuristic to the 2D-BP problem and com-
pared its performance to that of the constructive
heuristics developed explicitly for the 2D-BP problem.
Algorithms GLS (Faroe et al. 2003) and HA (Lodi

et al. 2002b) were coded in C and run on a Digital
500 workstation with a 500 MHz CPU. Algorithms
S-Pack, MPV-BS, and MPV (Martello et al. 2000) were
coded in C and tested on a Pentium4 2000 MHz CPU.
For MPV a time limit of 1,000 seconds was imposed
for each instance. The results of GLS are taken from
the literature and were obtained with a time limit
of 1,000 seconds for each instance on a Digital 500
workstation CPU (equivalent to 300 seconds on the
Pentium4 2000 MHz CPU, according to the SPEC
CPU2000 benchmarks published in Standard Perfor-
mance Evaluation Corporation (2000).
The results for the three-dimensional case are sum-

marized in Table 4. The instance type, bin dimensions,
and the number of items are given in the first col-
umn, whereas the second displays the mean results
of the C-EPBFD heuristic. The mean results obtained
by the S-Pack (Martello et al. 2000), MPV-BS (Martello
et al. 2000), and HA (Lodi et al. 2002b) constructive
heuristics are displayed in Columns 3, 4, and 5, respec-

tively, whereas Columns 6, 7, and 8 display, respec-
tively, the results obtained by MPV, the branch-and-
bound proposed by Martello et al. (2000); GLS, the
metaheuristic algorithm by Faroe et al. (2003); and
LB, the lower bound proposed by Boschetti (2004).
Finally, Columns 9, 10, and 11 display the gaps of the
mean solutions obtained by C-EPBFD relative to those
of MPV, GLS, and LB, respectively. The gaps were
computed as �meanC-EPBFD−meano�/meano, where for a
given set of problem instances, meanC-EPBFD and meano
are the mean values obtained by the C-EPBFD heuris-
tics and the method compared to, respectively. A nega-
tive value signals that C-EPBFD yielded a better mean
value. For each class of instances, the row Class total
reports the number of bins obtained as the sum of the
results of the class instances. The last row of the table
displays the total number of bins used, computed as
the sum of the Class total values in the column.
These results show that C-EPBFD achieves better

results than the other constructive heuristics. More-
over, it also obtains better results than those of the
branch-and-bound MPV. The GLS metaheuristic algo-
rithm obtains better results than our method, but the
gaps are less than 2% with a computational effort of
half a second in the worst case, against 1,000 sec-
onds needed by MPV and GLS. Furthermore, the
gaps between the lower bound and the results of our
method are quite small (less than 5%). In particular,
in Class 4 the gap is less than 1%. This is the class
where the majority of the items are bigger than half
bin, so the value of the lower bound is tight to the
optimal one and, in Class 4, C-EPBFD improves the
results of GLS. This performance is the more remark-
able given that the C-EPBFD solutions were obtained
within a computational effort three orders of magni-
tude smaller than both MPV and GLS.
The C-EPBFD heuristic was also tested on 2D-BP

problem instances. The results are summarized in
Table 5 as relative gaps, in percentage, between the
C-EPBFD heuristic we propose and the heuristics enu-
merated in the following. The gap was computed as
�meanC-EPBFD − meano�/meano where, for a given set
of problem instances, meanC-EPBFD and meano repre-
sent the mean values obtained by C-EPBFD and the
method it is compared to, respectively. A negative
value signals a better performance of the C-EPBFD
heuristic. The instance type, bin dimensions, and the
number of items are given in the first column, whereas
Columns 2 to 8 present the results for the constructive
heuristics in the literature (see Monaci and Toth 2006
for a detailed presentation of the heuristics):
• Greedy procedures:
—Finite bottom left (FBL), finite first fit (FFF),

and finite best fit (FBF), proposed by Berkey and
Wang (1987);

—Alternate directions (AD), proposed by Lodi
et al. (1999b).
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Table 4 C-EPBFD vs. State-of-the-Art Algorithms for the 3D-BP Problem

C-EPBFD MPV GLS Gap MPV Gap GLS
Class Bins n score S-PACK MPV-BS HA 1,000 sec 1,000 sec LB 1,000 sec (%) 1,000 sec (%) Gap LB (%)

1 100 50 13�7 15�3 13�5 13�9 13�6 13�4 12�9 0�74 2�24 6�20
100 27�2 27�4 29�5 27�6 27�3 26�7 25�6 −0�37 1�87 6�25
150 37�7 40�4 38 38�1 38�2 37 35�8 −1�31 1�89 5�31
200 51�9 55�6 52�3 52�7 52�3 51�2 49�7 −0�76 1�37 4�43

Class total 130�5 138�7 133�3 132�3 131�4 128�3 124�0

4 100 50 29�4 29�8 29�4 29�4 29�4 29�4 29 0�00 0�00 1�38
100 59 60 59 59 59�1 59 58�5 −0�17 0�00 0�85
150 86�8 87�9 87�3 86�9 87�2 86�8 86�4 −0�46 0�00 0�46
200 118�8 120�3 119�3 119 119�5 119 118�3 −0�59 −0�17 0�42

Class total 294�0 298�0 295�0 294�3 295�2 294�2 292�2

5 100 50 8�4 10�2 9�1 8�5 9�2 8�3 7�6 −8�70 1�20 10�53
100 15�1 17�6 17 15�1 17�5 15�1 14 −13�71 0�00 7�86
150 21 24 23�7 21�4 24 20�2 18�8 −12�50 3�96 11�70
200 28�1 31�7 31�7 28�6 31�8 27�2 26 −11�64 3�31 8�08

Class total 72�6 83�5 81�5 73�6 82�5 70�8 66�4

6 10 50 10�1 11�2 11 10�5 9�8 9�8 9�4 3�06 3�06 7�45
100 19�6 24�5 22�3 20 19�4 19�1 18�4 1�03 2�62 6�52
150 29�9 35 32�4 30�6 29�6 29�4 28�5 1�01 1�70 4�91
200 38�5 42�3 40�8 39�1 38�2 37�7 36�7 0�79 2�12 4�90

Class total 98�1 113�0 106�5 100�2 97�0 96�0 93�0

7 40 50 7�5 9�3 8�2 8 8�2 7�4 6�8 −8�54 1�35 10�29
100 13�2 15�3 13�9 13�3 15�3 12�3 11�5 −13�73 7�32 14�78
150 17 20�1 18�1 17�2 19�7 15�8 14�4 −13�71 7�59 18�06
200 25�1 28�7 28 25�2 28�1 23�5 22�7 −10�68 6�81 10�57

Class total 62�8 73�4 68�2 63�7 71�3 59�0 55�4

8 100 50 9�4 11�3 9�9 9�9 10�1 9�2 8�7 −6�93 2�17 8�05
100 19�5 21�7 20�2 19�9 20�2 18�9 18�4 −3�47 3�17 5�98
150 25�2 28�3 26�8 25�7 27�3 23�9 22�5 −7�69 5�44 12�00
200 31�3 35 34 31�6 34�9 29�9 28�2 −10�32 4�68 10�99

Class total 85�4 96�3 90�9 87�1 92�5 81�9 77�8

Total 743�4 802�9 775�4 751�2 769�9 730�2 708�8

• Constructive heuristics
—Floor ceiling (FC) and knapsack packing (KP),

proposed by Lodi et al. (1999a, b);
—HBM, proposed by Boschetti and Mingozzi

(2003), limited to 250 iterations.
All the heuristics were coded in Fortran (Monaci

and Toth 2006). Column 9 (Best) displays the min-
imum value of the results of the seven heuristics,
whereas Column 10 presents the value of the best
lower bound. For each class of instances, the row Class
total reports the overall class performances, whereas
the row Total displays the performances by consider-
ing the bins used in the total number of instances.
The figures displayed in Table 5 show that these

best heuristics for the 2D-BP problem present a high
variability of results relative to the problem class. To
obtain more stable results, the seven heuristics must
be executed and the best result chosen (Column 9).
Compared to each of the seven heuristics individually,
the C-EPBFD heuristic builds the minimum number
of bins, decreasing the total number of bins between

9% and 15%. Even when compared to the compos-
ite heuristic that takes the best solution of the seven
heuristics, the performance is impressive, the gap
being only around 1%. Also, this is achieved without
tailoring the method for 2D instances.
In the 2D case, the heuristic we propose is offering

the best overall mean results when compared to each
of the existing heuristics and is the only one that is
effective for all the classes of test instances.
Thus, the C-EPBFD heuristic offers the best perfor-

mance among existing heuristics for both the 3D-BP
and the 2D-BP problems. Moreover, it is comparable
to more expensive computational methods such as
tabu search, branch and bound, and GLS.

6. Conclusions
We introduced the extreme points, a new definition
for the points where to place an item in a three-
dimensional container, and applied this idea to the
3D-BP problem. The new definition allows us, with a
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Table 5 Percent Comparison of the C-EPBFD vs. State-of-the-Art Heuristics for the 2D-BP Problem

Best
Class Bins n FBL (%) FFF (%) FBF (%) AD (%) FC (%) KP (%) HBM (%) Best (%) bound (%)

1 10 20 −16�47 −13�41 −6�58 −26�80 −21�98 −16�47 −16�47 0�00 0�00
40 2�26 −9�93 −8�11 −8�11 −2�16 2�26 1�49 2�26 3�82
60 −0�98 −9�01 −9�42 −11�40 −4�72 −1�46 0�50 0�50 2�54
80 −5�48 −6�76 −8�31 −6�44 −4�50 −3�83 0�73 0�73 0�73
100 −4�14 −4�14 −8�47 −3�57 −2�41 −1�82 1�25 1�89 2�21

Class total −4�09 −7�35 −8�44 −8�61 −5�08 −2�98 −0�49 1�20 1�92

2 30 20 −52�38 −9�09 −50�00 −50�00 −66�67 −67�74 −67�74 0�00 0�00
40 0�00 0�00 −37�50 0�00 0�00 0�00 5�26 5�26 5�26
60 −10�34 −10�34 −48�00 −3�70 −10�34 −10�34 4�00 4�00 4�00
80 6�45 −2�94 −52�17 −2�94 −2�94 −2�94 3�12 6�45 6�45
100 2�56 0�00 −54�02 0�00 0�00 0�00 2�56 2�56 2�56

Class total −7�86 −3�73 −50�00 −8�51 −15�69 −16�23 −11�64 4�03 4�03

3 40 20 −7�02 −11�67 −8�62 −11�67 −11�67 −7�02 −3�64 3�92 3�92
40 2�11 −9�35 −11�01 −5�83 −2�02 4�30 2�11 4�30 5�43
60 −4�05 −12�35 −14�97 −11�80 −2�74 −2�07 −2�74 1�43 4�41
80 −7�08 −10�45 −13�97 −10�45 −2�48 −2�96 4�23 4�23 5�35
100 −7�26 −9�09 −13�21 −10�16 −2�95 −2�95 2�22 2�22 4�07

Class total −5�39 −10�35 −13�16 −10�13 −3�36 −2�18 1�27 3�01 4�66

4 100 20 −23�08 0�00 −44�44 −56�52 −54�55 −28�57 −28�57 0�00 0�00
40 −93�33 0�00 −33�33 5�26 −93�33 −93�33 −93�10 5�26 5�26
60 −69�05 −3�70 −43�48 −7�14 −69�05 −69�05 −68�29 4�00 13�04
80 −2�94 0�00 −46�77 −5�71 −2�94 −2�94 0�00 3�12 10�00
100 5�00 5�00 −48�15 10�53 5�00 5�00 5�00 10�53 13�51

Class total −72�19 0�77 −44�73 −8�39 −72�71 −72�25 −71�46 5�65 10�08

5 100 20 −4�41 −2�99 −5�80 −4�41 −4�41 −4�41 0�00 0�00 0�00
40 1�68 −7�63 −7�63 −9�70 −4�72 0�00 1�68 1�68 4�31
60 −5�70 −7�14 −6�67 −6�67 −4�21 −1�09 0�55 1�11 1�68
80 −5�66 −9�75 −11�66 −16�11 −2�72 −2�34 1�21 1�21 3�73
100 −3�02 −10�53 −11�89 −12�69 −2�69 −2�36 3�58 3�58 3�58

Class total −3�82 −8�75 −9�84 −11�60 −3�41 −1�95 1�80 1�91 3�07

6 300 20 −96�55 0�00 −44�44 −97�22 −97�22 −97�14 −96�43 0�00 0�00
40 −59�57 0�00 −32�14 −64�81 −64�81 −64�15 −56�82 11�76 26�67
60 −23�33 4�55 −47�73 −23�33 −23�33 −23�33 9�52 9�52 9�52
80 0�00 0�00 −48�28 0�00 0�00 0�00 0�00 0�00 0�00
100 −7�69 2�86 −50�68 −2�70 −7�69 −7�69 −5�26 5�88 12�50

Class total −72�94 1�72 −46�61 −76�91 −77�00 −76�49 −71�43 5�36 9�26

7 100 20 −3�45 −11�11 −3�45 −12�50 −11�11 −6�67 0�00 1�82 1�82
40 −0�88 −6�61 −5�04 −6�61 −4�24 0�89 0�89 1�80 3�67
60 −7�47 −8�52 −9�55 −11�05 −6�40 −4�17 −3�01 0�63 3�21
80 −3�33 −9�73 −10�77 −13�43 −1�69 −1�69 1�75 1�75 3�57
100 −3�17 −7�09 −6�78 −8�33 −2�14 −1�79 −1�08 0�36 2�23

Class total −3�79 −8�32 −8�02 −10�39 −3�79 −2�22 −0�36 1�09 2�95

8 100 20 −47�32 −7�81 −1�67 −6�35 −48�25 −47�32 −43�27 1�72 1�72
40 −0�86 −7�26 −3�36 −8�00 −10�16 −3�36 −4�17 1�77 2�68
60 0�62 −6�86 −6�86 −11�89 −4�12 −2�40 0�62 0�62 2�52
80 −1�30 −6�58 −6�20 −8�10 −2�99 −0�87 0�44 0�89 1�79
100 −3�45 −8�79 −7�89 −11�67 −2�78 −0�71 −2�44 0�00 2�19

Class total −7�25 −7�56 −6�22 −9�93 −9�64 −7�15 −6�12 0�72 2�18

9 100 20 −57�94 −60�28 0�00 −64�25 −57�94 −56�67 −56�67 0�00 0�00
40 −10�61 −15�24 0�00 −20�11 −12�58 −9�15 −15�76 0�00 0�00
60 −0�91 −5�21 0�00 −5�21 −5�21 −0�91 −0�46 0�00 0�00
80 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00
100 −3�47 −4�53 0�00 −4�53 −4�53 −3�47 −1�00 0�00 0�00

Class total −10�84 −13�20 0�00 −15�27 −12�13 −10�28 −10�43 0�00 0�00
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Table 5 (Continued)

Best
Class Bins n FBL (%) FFF (%) FBF (%) AD (%) FC (%) KP (%) HBM (%) Best (%) bound (%)

10 100 20 −76�50 −15�69 −14�00 −10�42 −76�50 −76�50 −84�25 0�00 2�38
40 −1�33 −13�95 −19�57 −8�64 −5�13 −2�63 −2�63 0�00 0�00
60 −5�41 −13�93 −23�91 −13�22 −4�55 −5�41 −4�55 1�94 7�14
80 −3�62 −17�39 −21�30 −18�40 −2�21 −2�92 2�31 2�31 8�13
100 −3�53 −14�58 −21�53 −13�68 −1�80 −0�61 1�86 1�86 7�19

Class total −23�34 −15�20 −21�12 −13�93 −23�00 −22�77 −30�80 1�57 5�92

Total −14�75 −9�78 −10�57 −15�79 −16�24 −14�69 −12�82 1�24 2�33

negligible computational effort, to better exploit the
bin volumes compared to the definitions currently
used in the literature. We also derived a new heuris-
tic algorithm, called C-EPBFD, that integrates the
extreme point placement concept. Extensive experi-
mental results indicate that the C-EPBFD algorithm
requires negligible computational efforts and yields
better results compared not only to all existing con-
structive heuristics for the 3D-BP problem, but also
to more complex methods such as the branch and
bound by Martello et al. (2000). Moreover, the same
algorithm applied to the 2D-BP problem yields results
that outperform those of the existing constructive
heuristics. Thus, C-EPBFD can be considered as the
current best constructive heuristic for the multidi-
mensional bin-packing problem. Notice, finally, that
item rotation can be easily introduced in the pro-
posed algorithms by duplicating each item once for
each possible rotation and adding a constraint on the
mutual exclusion of the duplicates. This would imply
small changes in the code without additional compu-
tational effort.
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Appendix. Pseudocodes
Algorithm 1. Update_3DEPL
Input I : Items already in the 3D bin;
Input 3DEPL: List of the extreme points corresponding
to the items in I ;

Input k: Item to be added to the packing in position
�xk� yk� zk�.

CanTakeProjection: function returning true if an EP k

lie on the side of an item k
maxBound�6�= �−1�−1�−1�−1�−1�−1�
for all i ∈ I do
if CanTakeProjection�k� i�YX� and
�xi +wi >maxBound�YX�� then
neweps�YX�= �xi +wi�yk+ dk� zk�
maxBound�YX�= xi +wi

end if
if CanTakeProjection�k� i�YZ� and
�zi +hi >maxBound�YZ�� then
neweps�YZ�= �xk� yk+ dk� zi +hi�
maxBound�YZ�= zi +hi

end if
if CanTakeProjection�k� i�XY � and
�yi + di >maxBound�XY �� then
neweps�XY �= �xk+wk�yi + di� zk�
maxBound�XY �= yi + di

end if
if CanTakeProjection�k� i�XZ� and
�zi +hi >maxBound�XZ�� then
neweps�XZ�= �xk+wk�yk� zi +hi�
maxBound�XZ�= zi +hi

end if
if CanTakeProjection�k� i�ZX� and
�xi +wi >maxBound�ZX�� then
neweps�ZX�= �xi +wi�yk� zk+hk�
maxBound�ZX�= xi +wi

end if
if CanTakeProjection�k� i�ZY � and
�yi + di >maxBound�ZY �� then
neweps�ZY �= �xk� yi + di� zk+hk�
maxBound�ZY �= yi + di

end if
end for
for all EP ∈ neweps� � do

3DEPL= 3DEPL∪ )EP*
end for
Order the 3DEPL by nondecreasing order of z, y, x
deleting the duplicated EPs.

return 3DEPL

Algorithm 2. UpdateResidualSpace
Input nItem: The new item just accommodated into
the bin

Input 3DEPL: List of the EPs of the bin
for all EP ∈ 3DEPL do
if �zEP ≥ znItem� and �zEP < znItem+hnItem� then
if �xEP ≤ xnItem� and �isOnSide�nItem�Y �� then
EPxRS =min�EPxRS�xnItem− xEP�
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end if
if �yEP ≤ ynItem� and �isOnSide�EP�nItem�X�� then
EPyRS =min�EPyRS�ynItem− yEP�

end if
end if
if �zEP ≤ znItem� and �isOnSide�nItem�XY �� then
EPzRS =min�EPzRS� znItem− zEP�

end if
end for
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