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The three-dimensional bin-packing problem is the problem of orthogonally packing a set
of boxes into a minimum number of three-dimensional bins. In this paper we present

a heuristic algorithm based on guided local search. Starting with an upper bound on the
number of bins obtained by a greedy heuristic, the presented algorithm iteratively decreases
the number of bins, each time searching for a feasible packing of the boxes. The process
terminates when a given time limit has been reached or the upper bound matches a pre-
computed lower bound. The algorithm can also be applied to two-dimensional bin-packing
problems by having a constant depth for all boxes and bins. Computational experiments
are reported for two- and three-dimensional instances with up to 200 boxes, showing that
the algorithm on average finds better solutions than do heuristics from the literature.
(Analysis of Algorithms, Suboptimal Algorithms; Cutting and Packing )

1. Introduction
The three-dimensional bin-packing problem asks for an
orthogonal packing of a set of boxes into a minimum
number of three-dimensional bins. The only restric-
tion imposed on the solution is that the boxes have
fixed orientation. The problem has several industrial
applications in cutting and loading contexts, and since
rotation of the boxes is not allowed, the model can be
used for solving several scheduling problems.
In this paper we present a new local search heuris-

tic based on the guided local search (GLS) method
(Voudouris 1997, Voudouris and Tsang 1999). Our
experiments show that the new heuristic constructs
better solutions than do existing algorithms for the
three-dimensional bin-packing problem. The heuristic
both produces fairly good solutions fast and is able to
improve solution quality when given more comput-
ing time.
The GLS method has its origin in constraint-

satisfaction applications, but it has also proven to be
a very powerful metaheuristic for solving hard opti-
mization problems. GLS uses memory to guide the

search to promising regions of the solution space;
this is done by augmenting the cost function with a
penalty term that penalizes “bad” features of previ-
ously visited solutions.
Starting with an upper bound on the number of

bins obtained by a greedy heuristic, the GLS algo-
rithm iteratively tightens the upper bound by remov-
ing one bin from a feasible solution. That is, for a
given number of bins, GLS constructs a feasible pack-
ing of the boxes. When such a packing has been
found, the number of bins is decreased by one, and
the procedure iterates until a given time limit has
been reached or the upper bound matches the lower
bound—in our case the L2 bound from Martello et al.
(2000).
The GLS algorithm assigns coordinates (including

bin numbers) to the boxes. Translation of boxes along
coordinate axes within one bin or moving boxes from
one bin to another defines the neighborhood of the
local search algorithm. The objective value of a given
solution is the total volume of the pairwise overlap
between boxes. Searching for a feasible solution is
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therefore equivalent to minimizing the objective func-
tion since an objective value of zero indicates a feasi-
ble packing.
To speed up the local search an implementation

of fast local search (FLS) has been used (Voudouris
1997, Voudouris and Tsang 1999). Since the neighbor-
hood is fairly large in the current setting, FLS drasti-
cally speeds up the search for a local minimum. This
is done by shadowing less promising parts of the
neighborhood—which in our case means temporarily
fixing some boxes at their current position.
The GLS algorithm has been evaluated on instances

with up to 200 boxes of varying types showing very
promising results compared to previous approaches:
within a fixed time limit, it generally finds better
solutions than the exact algorithm by Martello et al.
(2000). Applying the GLS algorithm to solve two-
dimensional problems it generally finds comparable
or better solutions than do other heuristics from the
literature, e.g., Lodi et al. 1999a and Lodi et al. 1999b,
Furthermore, it is easily generalized to problems in
which rotations are allowed or the items to be packed
have irregular shape.
This paper is organized as follows: in §2 we define

the considered problem more formally, and describe
some upper and lower bounds. The concept of guided
local search and our new algorithm is presented in
§3. The following section brings extensive empirical
results with the developed algorithm, comparing it to
state-of-art approaches from the literature. The paper
is concluded with a discussion of the achieved results
in §5.

2. The Three-Dimensional
Bin-Packing Problem

Cutting and packing problems have numerous appli-
cations, spanning from the direct use of the mod-
els (loading cargo into ships, vehicles, containers)
to a more abstract use of the models (scheduling
problems, budgeting, generation of valid inequalities).
Due to the large number of applications, different
variants of the problems have been developed based
on the additional constraints present in the concrete
application. Nearly all the problems considered in
the literature are ��-hard and, thus, are difficult to

solve to optimality. This makes it attractive to con-
sider heuristic approaches, as heuristics often are able
to return a “sufficiently” good solution in reasonable
time and generally are flexible to handle additional
side constraints.
In the present paper we consider the three-

dimensional bin-packing problem (3D-BPP) in which we
have a set J of n rectangular-shaped boxes, each
having a width wj , height hj and depth dj (all inte-
gers), and an unlimited number of identical three-
dimensional bins of width W , height H , and depth D.
The objective is to pack all the boxes into the
minimum number of bins, such that the original
orientation is respected (Coffman et al. 1996). The two-
dimensional bin-packing problem (2D-BPP) is the obvi-
ous restriction of 3D-BPP to two dimensions (width
and height).
Other variants of packing and loading include the

knapsack container loading problem, where the boxes
have an associated profit and the objective is to pack
a subset of the boxes into a single bin of fixed dimen-
sions such that the profit of the included boxes is as
large as possible. Other applications consider the min-
imum depth container loading problem (also known as
the strip packing problem) where the objective is to pack
all the boxes into a single container with fixed width
W and height H but variable depth D, which has to
be minimized. There may be additional constraints
to these models with respect to rotation of the boxes,
and to the packing pattern. In a guillotine packing the
boxes should be organized such that one can separate
them through a number of guillotine cuts (i.e., cuts
through the whole subject). For recent surveys on cut-
ting and packing problems, see Dyckhoff (1990) and
Dyckhoff et al. (1997). Using the typology of Dyckhoff
(1990), our problem may be classified as 3/V/I/M with
the additional information that the boxes have fixed
orientation and there is no restriction on the packing
pattern.

2.1. Lower Bounds
The first exact algorithm for solving the fixed-
orientation, 3D-BPP was proposed in Martello et al.
(2000). The algorithm is based on branch-and-bound
and thus relies on tight lower bounds on the objec-
tive value. An obvious lower bound for 3D-BPP
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comes from continuous relaxation, where it is assumed
that any fraction of a box may be packed into the bin.
Thus the continuous lower bound L0 is given by

L0 =
⌈∑n

j=1wjhjdj
WHD

⌉
�

The bound L0 can be computed in On� time, and
its worst-case performance ratio is 1

8 (Martello et al.
2000). Also, in practice, L0 is not a very tight bound.
Another lower bound can be derived by reduction

to the one-dimensional case. Thus consider the fol-
lowing set of “large” boxes

A= �j ∈ J � wj > W/2 and hj > H/2��
As no boxes in A fit beside or above each other we
may use a simple bound from one-dimensional bin-
packing based on the depth of the boxes from A. Let
L′1 be such a lower bound chosen as the maximum
of the bounds presented by Martello and Toth (1990)
and Dell’Amico and Martello (1995).
Let L′′1 be the bound L

′
1 obtained by using widths

and depths in the definition of A, and L′′′1 be the same
bound obtained by using heights and depths in the
definition of A. In this way, we get the tighter lower
bound (Martello et al. 2000)

L1 =max�L′1�L
′′
1�L

′′′
1 �

which can be computed in On2� time (Martello and
Toth 1990, Dell’Amico and Martello 1995).
A bound that explicitly takes all three dimensions

into account is defined as follows. For any pair of
integers p� q�, with 0< p ≤W/2 and 0< q ≤H/2, we
split the boxes into two classes

Klp� q� = �j ∈ J � wj > W −p and hj > H − q�
Ksp� q� = �j ∈ J \Klp� q�� wj ≥ p and hj ≥ q�

(1)

where the very small boxes with wj < p and hj < q are
left out of the problem. Notice that a box i ∈ Klp� q�
and a box j ∈ Ksp� q� cannot fit beside or above each
other. Obviously, we will need at least L′1 bins for
packing the boxes. The L′1 bins have a total volume
of WHDL′

1. Some of this volume has already been
used for the “large” boxes in Klp� q�, leaving the free
volume WHDL′

1 −WH
∑
j∈Klp� q� dj . Provided that the

volume
∑
j∈Ksp� q� wjhjdj of the “small” boxes Ksp� q�

exceeds the available volume in the L′1 bins, we may
increase the lower bound. This results in the follow-
ing bound
L′2p� q�

= L′1+max
{
0�

⌈∑
j∈Ks p� q� wjhjdj −WHDL′

1+WH
∑
j∈Klp� q� dj

WHD

⌉}

Choosing the best lower bound among all possible
values of p and q we get

L′2 = max
1≤p≤W/2�1≤q≤H/2

L′2p� q�� (2)

If we again let L′′2 be the bound (2) obtained by by
using widths and depths in (1), and L′′′2 be the bound
using heights and depths in (1), we get the tighter
lower bound (Martello et al. 2000)

L2 =max�L′2�L
′′
2�L

′′′
2 ��

which can be computed in On2� time. Martello et al.
(2000) show that the bounds L0 and L1 do not dom-
inate each other but that L2 dominates both L0 and
L1. We will thus use L2 as the lower bound in all our
experiments. Other more recent bounds are described
in Fekete and Schepers (1997).

2.2. Heuristics
Heuristics for 3D-BPP may be divided into construc-
tion and local-search heuristics. Simple construction
heuristics add one box at a time to an existing par-
tial packing until all boxes are packed. The boxes
are often pre-sorted by one of their dimensions and
added using a particular strategy, e.g., variants of first-
fit or best-fit strategies.
Local-search heuristics iteratively try to find a better

packing of the boxes. New solutions are generated by
defining a neighborhood function � over the set of
solutions � . In the current context, the set of solutions
is all possible packings of the boxes into bins; these
packings need not be feasible, as will be shown later.
The neighborhood function assigns to every solution
x ∈ � a set � x� ⊆ � of solutions that are in the
“vicinity” of x, e.g., solutions that can be obtained by
moving a box to another location within its bin or to
a new bin.
All the classical metaheuristics—simulated anneal-

ing, tabu search, and genetic algorithms—have been
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applied to 2D- and 3D-BPP; see Aarts and Lenstra
(1997) for a general description of these methods. In
the following we describe some of the most successful
local-search algorithms from the literature. It should
be noted that we have also included results on the
related strip packing problem. Furthermore, some of
the algorithms only allow guillotine packings or do
allow 90
 rotations of the boxes.
The first method that may be characterized as a

local search is the 2D-BPP heuristic given by Bengtson
(1982). A construction heuristic for the strip pack-
ing problem that uses (partial) backtracking forms
the basis for the overall algorithm. Starting with a
packing of a subset of the pieces (boxes in 3D), the
remaining pieces are iteratively packed into the bin
having maximum unused space. The method uses an
approach in which bins are either “active” or “inac-
tive”; the latter are bins that appear to be difficult
to pack any further. When all bins become inactive,
the search stops. Experiments showed that the algo-
rithm was fast and produced packings with a high
utilization.
Dowsland (1993) presented a simulated annealing

algorithm for the strip packing problem in 2D. The
algorithm tries to pack the pieces into one containing
rectangle. When a feasible packing has been found,
the height of the containing rectangle is reduced and
a new feasible packing is sought. The problem of find-
ing a feasible solution for a given height is solved
by minimizing the overlap between the pieces (the
objective function is the pairwise sum of the overlap).
Neighboring solutions are generated by moving any
single piece to any other position. Only a few experi-
ments on small instances (10–14 pieces) were made.
A tabu search algorithm for 2D-BPP was given

by Lodi et al. (1999a). This algorithm uses two sim-
ple construction heuristics for the actual packing of
pieces into bins. The tabu search algorithm controls
only the movement of pieces between bins. More pre-
cisely, two neighborhood functions were considered.
Both try to relocate a piece from the weakest bin to
another bin (the weakest bin is essentially the bin that
appears to be easiest to empty). The first neighbor-
hood function simply tries to pack the piece directly
into another bin, while the second tries to recom-
bine two bins such that one of them can hold the

piece being moved. Since the heuristics used for pack-
ing the pieces produce guillotine packings, so does
the overall algorithm. In Lodi et al. (1999b) this tabu
search approach was generalized to other variants of
2D-BPP, including the one considered in this paper,
that is, without the guillotine constraint. The exper-
imental results obtained by these tabu search algo-
rithms will be discussed in §4.
An implicit solution representation was also used

by Corcoran and Wainwright (1992), who presented
a genetic algorithm for strip packing in 3D. Solutions
were represented by a permutation of boxes. Given
such a permutation, a packing was constructed using
a first or next fit packing heuristic that processed the
boxes in the order given by the permutation. The
genetic algorithm maintained a population of permu-
tations on which standard crossover and mutation
operators were applied. Fairly large instances were
considered, but the algorithm was not compared to
other algorithms from the literature.
Another genetic algorithm, also based on an im-

plicit representation, was presented by Kröger (1995).
He considered the strip packing problem in 2D, con-
strained to guillotine packings but allowing 90
 rota-
tions of boxes. The approach used the fact that any
guillotine packing can be encoded using a slicing tree
structure from which a packing can be constructed
in linear time. Fairly complex crossover and muta-
tion operators were devised for the slicing tree struc-
ture. Also, all solutions were locally optimized using
a variant of the mutation neighborhood. Experiments
on medium-sized problems showed that the genetic
algorithm produced better solutions than did simpler
alternatives such as simulated annealing.

3. A New Heuristic for 3D-BPP
Based on the GLS metaheuristic we present a new
algorithm for producing good solutions to 3D-BPP.
The section is organized as follows: First, we give
a short description of GLS and then an overview
of the general approach taken to solve the problem.
Finally, there is a detailed description of the applica-
tion of GLS.
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3.1. GLS
GLS is a new metaheuristic that has proven to be
effective on a wide range of hard combinatorial opti-
mization problems. The heuristic was developed by
Voudouris and Tsang (1999)—originally for solving
constraint-satisfaction problems. The heuristic may be
classified as a tabu search heuristic; it uses memory to
control the search in a manner similar to tabu search.
However, the definition is simpler and more compact.
Given an initial solution x0 ∈ � , local search visits

a sequence of solutions x0�x1� � � � �xk such that xi ∈
� xi−1� for every i = 1�2� � � � � k, where � xi−1� is the
set of neighbors of xi−1. Solutions are compared using
the objective function f , which assigns a value f x� to
every solution x∈� . We assume that we would like to
minimize f , since our goal is to minimize the number
of bins needed to pack the boxes. However, it should
be pointed out that f need not be directly related to
the number of bins used; other quality measures may
be incorporated.
When the series of solutions x0�x1� � � � �xk ful-

fills f x0� > f x1� > · · · > f xk�, the local search
algorithm is denoted local optimization (also called
iterative improvement or hill-climbing). Local opti-
mization stops when the current solution xk is a local
minimum, that is, when � xk� contains no solution
better than xk. Applying local optimization to a solu-
tion using the objective function f will be denoted by
the operator LocalOptf . In the above case we have
xk = LocalOptf x0�.
GLS is based on the concept of features, i.e., a set of

attributes that characterizes a solution to the problem
in a natural way. We assume that any solution can
be described using a set of M features: A solution
x ∈� either does or does not have a particular feature
i ∈ �1� � � � �M�; the indicator function Iix� is 1 if x has
feature i and 0 otherwise.
The features should be defined such that the pres-

ence of a feature in a solution has a more or less direct
contribution to the value of the solution. This (direct
or indirect) contribution is the cost ci of the feature.
A feature with a high cost is not attractive and may
be penalized. The number of times a feature has been
penalized is denoted by pi (initially zero).

Penalties are incorporated into the search by con-
structing an augmented objective function

hx�= f x�+# ·
M∑
i=1
pi · Iix�

and performing local search on this function instead
of on the original objective function. The parameter #
should balance the original objective function to the
contribution from the penalty term. This is the only
parameter in GLS that must be determined experi-
mentally.
The main GLS algorithm performs a number of

local optimization steps, each transforming a solution
x into a local minimum x∗ = LocalOpthx�; note that
since all penalties initially are zero, the first local opti-
mization actually finds a local minimum with respect
to f . The local minimum is obtained using the fast
local search method (see §3.3).
Every time a local minimum has been reached, one

or more features are penalized by incrementing their
pi value by one. Features that have maximum utility

$ix∗�=
ci

1+pi
· Iix∗�

are penalized. Loosely speaking, these are the fea-
tures with maximum cost in x∗ that have not been
penalized too often in the past. After having penal-
ized these features, the local optimization continues
from x∗ (now with respect to the modified h function).

3.2. General Approach
One of the key obstacles in applying metaheuristics
like GLS to 3D-BPP is the representation of a solution
space and a corresponding neighborhood function
that permits a natural traversal between all feasible
solutions. The reason is that even the construction of
feasible solutions that are better than the solutions
obtained by polynomial heuristics is a difficult task.
The crucial constraint that makes it hard to construct
good feasible solutions is that there must be no over-
lap between boxes in the same bin. Therefore, we
have chosen to relax this constraint such that we get a
solution space for which the only constraint imposed
is that the boxes must be placed within the walls of
a bin.
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Empirical results from Martello et al. (2000) show
that the typical span we can expect between upper
bounds (ub) obtained by heuristics and lower bounds
(lb) like the L2-bound is likely to be small compared
to the optimal solution. Since the 3D-BPP asks for a
packing of the boxes into a minimum number of bins,
the function we want to minimize will only map to a
few discrete values within the set �lb� � � � �ub�. There-
fore, using the number of bins directly as the objective
that we would like to minimize makes the solution
“landscape” too flat for any local search procedure.
We therefore apply an algorithm that can roughly

be split into two separate phases. The initial phase
starts by computing an upper bound and a lower
bound while the second phase tightens the upper
bound solution using a GLS-based heuristic. If in
the first phase it turns out that the lower bound
equals the upper bound, we have found an opti-
mal solution and are done. Otherwise, we move to
the second phase and use a heuristic to improve
the upper bound by iteratively removing one bin
from a feasible solution. The improving upper bound
then reflects the improving current solution for the
3D-BPP. A similar approach—but based on simulated
annealing—was used by Dowsland (1993) in the con-
text of two-dimensional strip packing of rectangles
into a larger containing rectangle; the initial height of
the containing rectangle was set to an upper bound
value and reduced each time a feasible packing was
found.

3.3. Application of GLS
The problem handed to the GLS heuristic is there-
fore to construct a feasible packing of the boxes into a
fixed number of bins. When such a packing has been
found, the number of bins is decreased by one and
GLS is restarted with the remaining bins. This process
continues until a given time limit is exceeded or the
upper bound matches the lower bound.
Since the core of GLS is a local search algorithm,

we will first develop a local search framework for
the 3D-BPP. Based on this description a GLS heuris-
tic will be implemented by adding solution features
and penalties. The presentation is concluded with a
description of the fast local search technique.

3.3.1. Local Search for 3D-BPP. Let J = �1� � � � �n�
denote the set of boxes, m the number of bins, and
let xj� yj� zj denote the coordinates of the left-bottom-
back corner of box j ∈ J with respect to the left-
bottom-back corner of bin sj . A solution space � can
now be defined as the set of all possible positions of
boxes j ∈ J such that

xj ∈ �0� � � � �W −wj�
yj ∈ �0� � � � �H −hj�
zj ∈ �0� � � � �D−dj�
sj ∈ �1� � � � �m��

(3)

Given a solution x ∈� we define the neighborhood
� x� as all solutions that can be obtained by translat-
ing any single box along one of the coordinate axes
or to the same position in another bin. The set � x�
is therefore constructed by assigning a new value to
one of the variables xj , yj , zj , or sj for any single box
j ∈ J . It is clear that this definition of a solution space
includes all feasible packings and that there is a path
of moves between every pair of solutions in � .
The initial solution with m bins is generated by

moving the boxes in bin m+1 to random positions in
the bins 1 to m. If it is the first call to GLS for a given
problem instance, i.e. m = ub − 1, the solution with
m+1 bins has been constructed by the upper bound
heuristic; otherwise, the previous call to GLS found
a feasible packing with m+1 bins. By not generating
the initial solution purely on a random basis some of
the information from previous solutions is preserved.
Of course, a drawback to this approach is that the
structure of a previous solution can confine GLS to
an area of the solution space that can be difficult to
escape.
The objective value of a given solution is the

total volume of the pairwise overlap between boxes.
Searching for a feasible solution is therefore equiv-
alent to minimizing the objective function since an
objective value of zero indicates a feasible pack-
ing. For a given solution x ∈ � let overlapij x�
be the volume of overlap between boxes i and j ,
where i� j ∈ J . Note that overlapij x� can be com-
puted in constant time. If si = sj we set the overlap
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equal to zero. The objective function can now be for-
mulated as

f x�= ∑
i� j∈J i<j

overlapij x�� (4)

A similar solution space and objective function was
used by Dowsland (1993), but with a definition of a
larger set of neighboring solutions obtained by mov-
ing any piece to any other position. Dowsland notes
that the size of this neighborhood gives a too-slow
convergence towards a local minimum. Our set of
neighboring solutions is still fairly large but, as will
be described later, with the application of fast local
search it is possible to achieve a significant speedup
of local search.

3.3.2. Features and Augmented Objective Func-
tion. A feature is defined for each pair of boxes
i� j ∈ J where i < j , and we let a particular solution
x ∈� exhibit the feature if there is an overlap between
box i and j . For boxes i� j ∈ J the presence of the fea-
ture is given by the indicator function

Iij x�=
{
1 if overlapijx� > 0

0 otherwise�
(5)

A similar definition of features is used by
Voudouris and Tsang (1996), where GLS is used to
solve partial constraint-satisfaction problems (PCSP). In
Voudouris and Tsang (1996) each of the constraints in
a PCSP is relaxed and incorporated into the formula-
tion as a feature with the feature cost given by the vio-
lation cost of a constraint. With a weight assigned to
each constraint (high for hard constraints), the objec-
tive is given as the weighted sum of violated con-
straints. Each time the local search settles in a local
minimum the penalties for one or more of the most
expensive violated constraints is increased.
In the context of 3D-BPP finding a feasible pack-

ing can be viewed as a constraint-satisfaction problem
with a constraint defined for each pair of boxes stat-
ing that the boxes may not overlap. With the weight
of a constraint dynamically set to the amount of over-
lap, it gives an objective defined as the sum of pair-
wise overlap. The features capture the properties of
the solution that account to the value of the objective

function. For each feature, pij denotes the correspond-
ing penalty parameter, which initially is zero. The
augmented objective function can now be defined as

hx�= f x�+# · ∑
i� j∈J i<j

pij · Iijx��

3.3.3. Feature Costs. The purpose of the features
is to introduce or strengthen constraints on the solu-
tion space on the basis of information collected during
the search. The source of information that determines
which features are penalized in a local minimum x∗ is
the feature cost and the amount of previous penalties
assigned to the features in x∗. To escape the local min-
imum we want to penalize features in x∗ with maxi-
mum utility

$ijx∗�=
cij

1+pij
Iijx∗��

Note that a feasible packing is equal to a solution
with no exhibited features, so in the long run all fea-
tures must be eliminated. We have chosen to identify
bad overlaps on the general principle that an over-
lap between large boxes is worse than an overlap
between small boxes. The feature cost cij on the one
hand depends on the overlap between the boxes i and
j and on the other hand on the volume of the boxes.
The results presented later are based on the following
feature cost:

cij x�=



overlapij x�+volumei�+volumej�

if overlapijx� > 0

0 otherwise�

(6)

where volumei� denotes the volume of box i ∈ J .
Good results were also obtained with other cost func-
tions, e.g., the product between overlap and volume,
which very aggressively avoids overlap between rel-
atively large boxes. A cost function that only incorpo-
rated the overlap also showed good results.

3.3.4. The # Parameter. The value of # deter-
mines to what degree an increased penalty will mod-
ify the augmented objective value and push the
local search out of a local minimum. A large value
will make the search more aggressive to avoid solu-
tions with penalized features and provoke the search
to make large jumps in the solution space without
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Figure 1 Typical Behavior of the Two Terms in the Objective Function for Two Different � Values as GLS finds a Feasible Solution

paying much attention to the overlap term in the aug-
mented objective function. A small #, on the other
hand, may require more penalties to escape a local
minimum but will result in a more cautious explo-
ration of the solution landscape that is more sensi-
tive to the gradient of f x�. However, a disadvantage
with a too-small # value might be a too-restricted
exploration of the solution space.

In Figure 1 two plots are shown that illustrate how
the behavior of the terms in the objective function
typically is affected by the choice of #. The x-axis indi-
cates the number of iterations in GLS, i.e., the num-
ber of calls to FLS. The objective value is depicted
at the y-axis. In the upper figure, # is set to 0.4% of
maximum box volume and in the lower figure to 4%
of maximum box volume. The plots show the overlap
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f x� drawn with a solid line and the penalty term
#
∑
i� j∈J i<j pijIijx� drawn with a dashed line as the

heuristic finds a feasible packing for the problem.
On the upper figure, a small #-value of 0.4% of

the maximum box volume is used. Note the plateaus
of f x� and how the penalty is increased until GLS
escapes the local minimum. On the lower figure a
#-value of 4% is used. Most of the plateaus have dis-
appeared, and the overlap function shows a much
larger variation, that is, GLS visits a more diverse part
of the solution space. Note however that the penalty
term reaches much higher values than in the previous
figure.
With reference to the present formulation of

3D-BPP, # expresses the amount of volume that is
added to an overlap between the boxes that are asso-
ciated with the penalized feature. Through empiri-
cal tests a value of a few percent of the maximum
pairwise overlap showed good results. During these
experiments it also seemed as if # should be chosen
dependent on the expected average volume of overlap
between the boxes in a solution. As illustrated in Fig-
ure 1, a #-value of 0�4% of the maximum box volume
leads to a too-slow convergence since it takes a very
long time before the penalty term grows large enough
to escape a local minimum. On the other hand, a
#-value of 4% implied a too-scattered search, since the
penalty term grows so quickly that a local minimum
is not investigated thoroughly. Thus, in the computa-
tional experiments in §4, a #-value of 1% of the max-
imum box volume was used, since this value led to
good results for most of the test instances.
We also performed some experiments where the

value of # was dynamically adapted to the specific
instance. This was done by looking at the number
of plateaus (in the original objective function) during
the local search and adjusting # so that they had an
“appropriate” structure. However, we were not able
to obtain better results by the self-adjusting frame-
work than those obtained by using a fixed #-value of
1% of the maximum box volume.

3.3.5. Fast Local Search. Already during the pre-
liminary experiments it was clear that, due to the
very large neighborhood adopted, conventional local
search methods were too slow to converge to a
local minimum. To speed up the local search an

implementation of fast local search (FLS) has been
used (Voudouris 1997, Voudouris and Tsang 1999).
Although FLS alone does not provide very good
solutions it has proven to be a powerful tool when
combined with GLS (Tsang and Voudouris 1997;
Voudouris 1997, 1998; Voudouris and Tsang 1996,
1999).
In FLS the neighborhood is divided into a num-

ber of smaller sub-neighborhoods that can be either
active or inactive. Initially all sub-neighborhoods are
active. FLS now continuously visits the active sub-
neighborhoods in some order. If a sub-neighborhood
is examined and does not contain any improving
move, it becomes inactive. Otherwise, it remains
active and the improving move is performed; a reac-
tivation of a number of other sub-neighborhoods may
be performed if we expect these to contain improving
moves as a result of the move just performed.
The order in which the sub-neighborhoods are vis-

ited may be either static or dynamic. As the solution
value improves, more and more sub-neighborhoods
become inactive, and when all sub-neighborhoods
have become inactive the best solution found is
returned by FLS as a local minimum.
The key to decide how to split the neighborhood

into sub-neighborhoods is to make an association
between features and sub-neighborhoods. The associ-
ation should enable us to know exactly which sub-
neighborhoods have a direct effect upon the state of a
certain feature. This association is used each time GLS
settles in a local minimum. As penalties are assigned
to one or more features, the sub-neighborhoods asso-
ciated with the penalized features are activated and
FLS is restarted. Due to the limited reactivation, each
local optimization using FLS will be aimed at remov-
ing the penalized features from the solution instead
of exploring all possible moves.
To apply FLS in the present 3D-BPP heuristic we

let each box j ∈ J correspond to a sub-neighborhood.
As a result each sub-neighborhood holds moves that
correspond to
• all translations of the box along the coordinate

axes in the same bin, i.e., the assignment of a new
value to either xj , yj or zj , or
• moving the box to the same coordinates in

another bin, i.e., the assignment of a new value to sj .

INFORMS Journal on Computing/Vol. 15, No. 3, Summer 2003 275



FAROE, PISINGER, AND ZACHARIASEN
Guided Local Search for the Three-Dimensional Bin-Packing Problem

During a local optimization, sub-neighborhoods are
visited in a static round-robin fashion (no reactivation
is made during the optimization). When a local mini-
mum x∗ is reached, the following reactivation scheme
is used. First the two boxes, i and j , corresponding to
the penalized feature having maximum utility, $ijx∗�,
are reactivated (if more than one feature has maxi-
mum utility, an arbitrary one among these is chosen).
Secondly, we reactivate all boxes that overlap with
boxes i and j . The latter reactivation is added to per-
mit FLS to pay attention not just to the two over-
lapping boxes but also to the whole area around the
penalized feature.

3.3.6. Polynomial-Time Evaluation of the
Neighborhood. As mentioned above, each sub-
neighborhood corresponds to all translations of a box
along the coordinate axes in the same bin, or to the
movement of the box to another bin. If we consider
translations of box i along the x-axis, we wish to
minimize the following objective:

min
xi=0���� �W−wi

∑
j∈J\�i�

overlapij x�+#pijIijx��� (7)

Evaluating this function will take OnW� time, since
for each box iwewill have to considerOW� positions.
As the input size of the problem is On logW +H��,
the time complexity is exponential in the input size. In
practice, this means that, for large bin-dimensions, it
becomes too expensive to search the neighborhood.
We may, however, decrease this time complexity by

showing that only certain coordinates of the neighbor-
hood need to be investigated. Translating box i along
the x-axis will lead to the following overlap function
with respect to another box j :

i

j
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j x3
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x3
j = xj + wj − wi

x4
j = xj + wj .

Table 1 Summary of GLS Parameters (with References to Correspond-
ing Equations)

Solution space � All possible positions of the boxes in a fixed
number of bins (3)

Neighborhood � �x� Translation of any single box along one of the
coordinate axes or to the same position in
another bin

Objective function f �x� Pairwise overlap of all boxes (4)
Features One feature for every pair of boxes indicating

whether the two boxes overlap in the current
solution (5)

Feature costs cij �x� Pairwise overlap plus volume of overlapping
boxes (6)

�-value Chosen as 1% of maximum box volume
Fast local search A sub-neighborhood consists of the solutions that

can be obtained by moving a single box

The overlap function is a piecewise linear function
with breakpoints at x1j � x

2
j � x

3
j � x

4
j . The function (7) is

the sum of such piecewise linear functions, and thus
it will also be a piecewise linear function with break-
points �x1j � x

2
j � x

3
j � x

4
j �j∈J . Such a function will attain its

minimum in one of the breakpoints (or for xi = 0 or
xi =W −wi). There are at most 4n breakpoints mean-
ing that we need only to consider these candidate
positions for placing box i in (7). This leads to an
overall On2� time complexity for minimizing (7).

3.3.7. Summary. In Table 1 we summarize the
adoption of the general GLS algorithm to 3D-BPP.
Note that we use GLS to find a feasible packing of
the boxes into m bins. For a detailed description of
the general GLS algorithm in pseudo-code, see, e.g.,
Voudouris (1997).

4. Computational Experiments
In this section we will present the results from the
computational experiments. Our goal is to show that
the new algorithm on average produces better solu-
tions than all other known (iterative) algorithms for
the two- and three-dimensional bin-packing problem
within the same amount of time. Also, we show
that high-quality solutions for medium to large-size
instances can be constructed in minutes on a standard
workstation.
The presented algorithm was coded in C and com-

piled using the gnu C compiler. For the instances
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in three dimensions the algorithm was compared
with the exact algorithm for 3D-BPP by Martello
et al. (2000), and for the two-dimensional case
with the tabu search heuristic for 2D-BPP by Lodi
et al. (1999a, b).
To construct the initial upper bound, the GLS algo-

rithm applies the following heuristic: The boxes are
sorted according to non-increasing depths, and a sub-
set of boxes with total volume larger than the bin vol-
ume is selected. The selected boxes are packed in two
dimensions using the shelf-approach (Chung et al.
1982, Berkey and Wang 1987). This process is repeated
until a number of “bin-slices” have been generated.
These bin-slices are then combined to whole bins by
using a first-fit decreasing algorithm on the depths of
the bin-slices. The heuristic runs in On2� time.
In the following section we will first present the

results obtained on the three-dimensional problem
and then the results for the two-dimensional problem.

4.1. 3D Instances
In order to evaluate the GLS algorithm we com-
pared it with the MPV algorithm for 3D-BPP (Martello
et al. 2000). The MPV algorithm is exact in the sense
that it will reach an exact solution provided that it
gets sufficient time. Since we ran the MPV algorithm
with limited time it should be considered as a (good)
heuristic. The following instances from (Martello et al.
2000) were considered for problems with 50 to 200
boxes:
• Class 1: The majority of the boxes are very high

and deep.
• Class 4: The majority of the boxes have large

dimensions.
• Class 5: The majority of the boxes have small

dimensions.
• Class 6: Berkey and Wang (1987) instances with

dimensions randomly generated in a small interval.
• Class 7: Berkey and Wang (1987) instances

with dimensions randomly generated in a medium
interval.
• Class 8: Berkey and Wang (1987) instances with

dimensions randomly generated in a large interval.
For each class (i.e., 1, 4, 5, 6, 7, and 8) and number of
boxes (i.e., 50, 100, 150, and 200) there were generated

10 different problem instances based on different ran-
dom seeds. We did not consider classes 2 and 3, since
these have properties similar to class 1. Also, class 9
was not considered, since these problems merely have
the character of puzzles than of packing problems.
Both algorithms were run on a Digital 500au work-
station with a 500 MHz 21164 CPU (SPECint95 value
of 15.7) with a time limit of 1000 seconds for each
instance.
While GLS uses a simple On2� heuristic to con-

struct the first initial solution, the MPV algorithm
uses two advanced heuristics. The first is based on
bin-slices that are combined to whole bins by using
an exact one-dimensional bin-packing algorithm, the
second based on a branch-and-bound algorithm with
limited width of the search tree.
Table 2 compares the average solutions from the

GLS algorithm and the MPV algorithm over 10 differ-
ent problem instances for each class and box count.
Columns indicate GLS solutions after 60 (z60 sec), 150
(z150 sec) and 1000 (z1000 sec) seconds, zMPV shows the best
solution of the MPV algorithm, L2 the correspond-
ing lower bound. Providing the solution values for
three different time limits makes it easier to see how
the algorithm performs in the short and the long run.
Column optGLS indicates the number of instances for
which the value of the GLS solution matched the L2
lower bound and “z1000 sec ≤ zMPV” the instances where
GLS obtained equal or better solutions than the MPV
algorithm.
For the smallest instances (n = 50), further exper-

iments with the MPV algorithm showed that it was
able to solve a significant fraction of the instances
to optimality. However, the exact solution of prob-
lem instances of this size required 85,884 seconds
on average (class 1), without solving two of the 10
instances to optimality within 300,000 seconds. Taking
into account the exponential growth of the solution
space, we cannot expect to solve problems with 100 or
more items to optimality with present techniques (this
point is further illustrated in Figure 2). Thus, heuristic
algorithms are indeed necessary for such problems.
The GLS algorithm finds solutions similar to or

better than MPV in all the cases, and even after
60 seconds the solutions are on average considerably
better than those obtained by the MPV algorithm.
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Table 2 Results for the Three-Dimensional Instances (Averages of Ten Instances for Each Class and Size) with
Time Limit of 1000 Seconds

GLS
MPV

Class Bin Size n z60sec z150sec z1000sec zMPV L2 opt GLS z1000sec ≤ zMPV

1 100×100 50 13	4 13	4 13	4 13	6 12	5 3 •
100 26	9 26	7 26	7 27	3 25	1 0 •
150 37	5 37	2 37	0 38	2 34	7 0 •
200 52	8 52	1 51	2 52	3 48	4 0 •

4 100×100 50 29	4 29	4 29	4 29	4 28	7 4 •
100 59	0 59	0 59	0 59	1 57	6 1 •
150 87	1 86	9 86	8 87	2 85	2 1 •
200 119	9 119	7 119	0 119	5 116	3 1 •

5 100×100 50 8	3 8	3 8	3 9	2 7	3 2 •
100 15	1 15	1 15	1 17	5 12	9 0 •
150 20	7 20	3 20	2 24	0 17	4 0 •
200 27	8 27	5 27	2 31	8 24	4 0 •

6 10×10 50 9	8 9	8 9	8 9	8 8	7 1 •
100 19	3 19	1 19	1 19	4 17	5 0 •
150 29	5 29	4 29	4 29	6 26	9 0 •
200 38	5 38	0 37	7 38	2 35	0 0 •

7 40×40 50 7	4 7	4 7	4 8	2 6	3 0 •
100 12	5 12	3 12	3 15	3 10	9 1 •
150 16	1 15	8 15	8 19	7 13	7 0 •
200 24	4 24	1 23	5 28	1 21	0 0 •

8 100×100 50 9	2 9	2 9	2 10	1 8	0 0 •
100 18	9 18	9 18	9 20	2 17	5 1 •
150 24	5 24	1 23	9 27	3 21	3 1 •
200 30	6 30	1 29	9 34	9 26	7 0 •

Total 738	6 733	8 730	2 769	9 684	0 16 24
Average 30	78 30	58 30	43 32	08 28	50 0	67

Note especially the class 4 instances where the MPV
algorithm performs very well, since it does not use
much time on the exact filling of a single bin—as only
one or two boxes fit into each bin. Nevertheless, the
GLS algorithm is capable of finding equal or even bet-
ter solutions for these instances.
On average, the GLS algorithm used 30�43 bins

while the MPV algorithm used 32�08 bins. Since the
lower bound is 28�50 the relative gap is 6�8% and
12�6%, respectively, meaning that the GLS algorithm
decreased the gap to the lower bound by about half.

4.2. 2D Instances
The presented GLS algorithm is also used to solve
2D bin-packing problems by setting the depth of
all boxes and bins to a constant value of one. For
the two-dimensional instances we compare the GLS

algorithms with the tabu-search (TS) algorithm by
Lodi et al. (1999a, b). This algorithm is based on
construction algorithms for packing a single bin,
where the tabu-search algorithm is used to control
the movement of pieces between the bins. It should
be emphasized that the GLS algorithm does not take
advantage of the fact that the instances are two-
dimensional and thus obviously is somewhat slower
than the TS algorithm.
The GLS algorithm was run on a Digital 500au

workstation with a 500 MHz 21164 CPU, while the
results for the tabu search algorithm were taken
directly from Lodi et al. (1999a, b); these experiments
were run on a Silicon Graphics INDY R4000sc with
a 100 MHz CPU and Silicon Graphics INDY 10000sc
with a 195 MHz CPU, respectively. The GLS algo-
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Figure 2 Average Solution Value (Number of Bins) as a Function of Time for Problem Class 1 (150 Items)

rithm was assigned a time limit of 100 seconds for
each instance, approximately matching the computing
effort of the tabu-search algorithms.
In the following tables we report the GLS solution

values after 5, 30 and 100 seconds, and the solution
value found by TS. The TS solution is taken from
Lodi et al. (1999a), since no results were reported for
these instances in Lodi et al. (1999b). The column L2
is the lower bound used by GLS while LLMV shows
the lower bound reported in Lodi et al. (1999a).
In Table 3 results on problem instances from

the literature are reported. The considered instances
are cgcut1-cgcut3 (Christofides and Whitlock 1977)
and gcut1-gcut13/ngcut1-ngcut12 (Beasley 1985); all
these instances are obtained from the OR-Library, see
http://www.ms.ic.ac.uk/info.html. These instances
are two-dimensional cutting problems that were
transformed to 2D-BPP in the following way: First,
the value of the pieces is ignored, and second, for the
cgcut and ngcut instances, the maximum number of
pieces is generated for each type.
The columns z5 sec, z30 sec and z100 sec indicate the solu-

tions obtained by GLS after 5, 30, and 100 seconds.
The solutions are compared with results (zTS)

obtained with the tabu search algorithm by Lodi
et al. (1999a). In the following columns L2 is the
lower bound, and LLMV is the lower bound from Lodi
et al. (1999a). The column “z100 sec ≤ zTS” indicates the
instances where GLS obtained equal or better solu-
tions than TS, “z100 sec < ub” the instances where GLS
was able to improve the initial upper bound, and
optGLS the instances for which the value of the GLS
solution matched the LLMV lower bound.
The GLS algorithm always finds a solution that is

at least as good as the TS solution. On average, GLS
used 5�82 bins while TS used 6�11 bins. With a lower
bound of 5�50 the relative gap has been decreased
from 11�1% to 5�8%. It should be emphasized that
since we use a very simple heuristic for the initial
solution, it is in most cases the GLS algorithm that
actually finds the improved solutions. Moreover, the
GLS algorithm finds the returned solutions after only
30 seconds, which is comparable to the solution times
of the TS algorithm. Only two instances are not solved
to known optimality.
Table 4 compares the GLS and TS heuristics for

the Berkey and Wang (1987) instances with TS results
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Table 3 Results for Two-Dimensional Instances from the Literature with a Time Limit of 100 Seconds

GLS
TS

Instance z5sec z30sec z100sec zTS L2 LLMV z100sec ≤ zTS z100sec < ub opt GLS

cgcut1 2 2 2 2 • •
cgcut2 2 2 2 2 • •
cgcut3 23 23 23 23 • •
gcut1 5 5 5 5 4 4 • •
gcut2 6 6 6 6 5 6 • • •
gcut3 8 8 8 8 8 • • •
gcut4 14 14 14 14 13 13 • •
gcut5 3 4 3 3 • • •
gcut6 7 7 7 7 6 6 • •
gcut7 11 11 11 12 10 10 • •
gcut8 14 13 13 14 12 12 •
gcut9 3 3 3 3 • • •
gcut10 7 7 7 8 6 7 • •
gcut11 9 9 9 9 8 8 • • •
gcut12 16 16 16 16 • •
gcut13 2 2 2 2 • • •
ngcut1 3 3 3 3 2 2 • •
ngcut2 4 4 4 4 3 3 • •
ngcut3 3 4 3 3 • •
ngcut4 2 2 2 2 • •
ngcut5 3 3 3 3 • • •
ngcut6 3 3 3 3 2 2 • • •
ngcut7 1 1 1 1 • • •
ngcut8 2 2 2 2 • • •
ngcut9 3 4 3 3 • • •
ngcut10 3 3 3 3 • •
ngcut11 2 3 2 2 • • •
ngcut12 3 4 3 3 • • •
Total 164 163 163 171 152 154 28 14 26
Average 5	86 5	82 5	82 6	11 5	43 5	50

taken from Lodi et al. (1999b). Column optGLS indi-
cates the number of instances for which the value
of the GLS solution matched the LLMV lower bound.
The solutions are compared with results (zTS) obtained
with the tabu search algorithm by Lodi et al. (1999b).
The other columns are as in Table 3. The problem
instance classes are described in Table 5 and were con-
sidered for problems with 20, 40, 60, 80, and 100 items
with 10 different instances for each class item num-
ber (we used the same generated problem instances
as in Lodi et al. 1999a; these instances can be obtained
from http://www.or.deis.unibo.it/research_pages/
ORinstances/2BP.html).
In all the instances the GLS algorithm finds solu-

tions that are at least as good as those found by

the TS algorithm. In fact, after five seconds, it finds
better solutions on average than does the TS algo-
rithm. After 100 seconds, the GLS algorithm finds the
optimal solution for more than 60% of the instances.
Looking at the average values, the GLS algorithm
finds solutions using 9�90 bins, while the TS algorithm
finds solutions using 10�11 bins. The average lower
bound is 9�48 bins, and thus the relative deviation is
4�4% and 6�6%, respectively.
Table 6 considers the problem instances proposed

by Martello and Vigo (1998). Column optGLS indicates
the number of instances for which the value of the
GLS solution matched the LLMV lower bound. The
solutions are compared with results (zTS) obtained
with the tabu search algorithm by Lodi et al. (1999b).
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Table 4 Results for the Two-Dimensional Instances of Berkey and Wang (1987)

GLS
TS

Class Bin Size n z5sec z30sec z100sec zTS L2 LLMV opt GLS z100sec ≤ zTS

1 10×10 20 7	1 7	1 7	1 7	1 6	6 6	7 6 •
40 13	4 13	4 13	4 13	6 12	8 12	8 5 •
60 20	2 20	1 20	1 20	1 19	0 19	3 2 •
80 27	7 27	5 27	5 28	2 26	2 26	9 5 •
100 32	4 32	1 32	1 32	7 30	8 31	4 3 •

2 30×30 20 1	0 1	0 1	0 1	0 1	0 1	0 10 •
40 1	9 1	9 1	9 2	1 1	9 1	9 10 •
60 2	5 2	5 2	5 2	8 2	5 2	5 10 •
80 3	2 3	2 3	1 3	3 3	1 3	1 10 •
100 4	0 3	9 3	9 4	0 3	9 3	9 10 •

3 40×40 20 5	1 5	1 5	1 5	5 4	6 4	6 5 •
40 9	6 9	5 9	4 9	8 8	9 8	8 5 •
60 14	0 14	0 14	0 14	0 13	2 13	3 3 •
80 19	6 19	3 19	1 19	9 17	9 18	4 6 •
100 23	1 22	9 22	6 23	7 21	4 21	7 1 •

4 100×100 20 1	0 1	0 1	0 1	0 1	0 1	0 10 •
40 1	9 1	9 1	9 1	9 1	9 1	9 10 •
60 2	5 2	5 2	5 2	6 2	3 2	3 8 •
80 3	3 3	3 3	3 3	3 3	0 3	0 7 •
100 3	9 3	9 3	8 3	8 3	7 3	7 9 •

5 100×100 20 6	5 6	5 6	5 6	7 6	0 6	0 5 •
40 11	9 11	9 11	9 11	9 11	3 11	4 6 •
60 18	2 18	1 18	1 18	2 17	0 17	2 2 •
80 25	0 25	0 24	9 25	0 23	4 23	6 1 •
100 29	3 28	8 28	8 29	5 27	2 27	3 1 •

6 300×300 20 1	0 1	0 1	0 1	0 1	0 1	0 10 •
40 1	9 1	8 1	8 2	1 1	5 1	5 7 •
60 2	2 2	2 2	2 2	2 2	1 2	1 9 •
80 3	0 3	0 3	0 3	0 3	0 3	0 10 •
100 3	5 3	4 3	4 3	4 3	2 3	2 8 •

Total 299	9 297	8 296	9 303	4 281	4 284	5 194 30
Average 10	00 9	93 9	90 10	11 9	38 9	48 6	47

Table 5 Problem Classes Proposed by
Berkey and Wang (1987)

Class Items Bin Size

1 1�10�× 1�10� 10×10
2 1�10�× 1�10� 30×30
3 1�35�× 1�35� 40×40
4 1�35�× 1�35� 100×100
5 1�100�× 1�100� 100×100
6 1�100�× 1�100� 300×300

The other columns are as in Table 3. All bins have
dimensions 100×100 while the items have the follow-
ing properties:
• Class 7: The majority of the items are wide.
• Class 8: The majority of the items are high.
• Class 9: The majority of the items are large in

both dimensions.
• Class 10: The majority of the items are small in

both dimensions.
The GLS algorithm finds solutions that are at least

as good as those found by the TS algorithm (Lodi
et al. 1999b) for almost all of the problems. The GLS
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Table 6 Results for the Two-Dimensional Instances of Martello and Vigo (1998)

GLS
TS

Class Bin Size n z5sec z30sec z100sec zTS L2 LLMV opt GLS z100sec ≤ zTS

7 100×100 20 5	5 5	5 5	5 5	5 5	2 5	3 8 •
40 11	3 11	3 11	3 11	4 10	4 10	8 5 •
60 16	1 16	1 15	9 16	3 14	9 15	5 6 •
80 23	5 23	3 23	2 23	2 21	7 22	3 1 •
100 27	8 27	6 27	5 27	6 25	7 26	8 3 •

8 100×100 20 5	8 5	8 5	8 5	8 5	3 5	5 7 •
40 11	5 11	4 11	4 11	4 10	4 11	1 7 •
60 16	5 16	3 16	3 16	2 15	3 15	9 6
80 22	8 22	8 22	5 22	6 21	4 22	2 7 •
100 28	3 28	2 28	1 28	4 26	5 27	3 2 •

9 100×100 20 14	3 14	3 14	3 14	3 14	3 14	3 10 •
40 27	8 27	8 27	8 27	7 27	5 27	4 7
60 43	7 43	7 43	7 43	7 43	5 43	3 8 •
80 57	7 57	7 57	7 57	5 57	3 56	9 6
100 69	5 69	5 69	5 69	6 69	2 68	9 7 •

10 100×100 20 4	2 4	2 4	2 4	4 3	9 4	0 8 •
40 7	4 7	4 7	4 7	5 7	0 7	1 7 •
60 10	3 10	2 10	2 10	4 9	5 9	7 5 •
80 13	2 13	0 13	0 13	0 12	2 12	3 3 •
100 16	3 16	3 16	2 16	5 15	3 15	3 1 •

Total 433	5 432	4 431	5 433	0 416	5 421	9 114 17
Average 21	68 21	62 21	58 21	65 20	83 21	10 5	70

algorithm finds the optimal solution for more than
50% of these instances. The average solution values
are 21�58 for GLS and 21�65 for TS. The average lower
bound is 21�10, and thus the relative deviations are
2�3% and 2�6%, respectively.

5. Conclusion
We presented a new local-search heuristic based on
the GLS method. Extensive computational experi-
ments show that the new heuristic on average obtains
better solutions than do existing algorithms for the
three-dimensional bin-packing problem. In addition,
our experiments show that GLS can be applied to bin-
packing problems in two and three dimensions with
success. Since the concept of GLS is still relatively
new, it is important to determine the classes of prob-
lems for which it is suitable.
However, a more important achievement is that the

presented algorithm applies local search directly on

the packing problems. Most other successful local-
search heuristics for cutting and packing somehow
make use of a construction algorithm inside the
search. Thus the local search is restricted to a higher
level of the search, like assigning boxes to bins, or
determining an appropriate packing order. But the
construction algorithm may become a bottleneck for
the search, since one will never find better solutions
than the construction algorithm is able to produce.
Another benefit of working directly on the packing
problem is that we are able to handle boxes and bins
of a general form as long as the overlap between
boxes can be determined efficiently.
Dowsland (1993) used a similar objective function

without significant success. Using simulated anneal-
ing the investigated neighborhood became too large,
and thus the convergence towards good solutions was
slow. It is thus interesting how GLS and FLS are able
to focus the search on promising parts of the solution
space.
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