
Annals of Operations Research 131, 203–213, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

TSpack: A Unified Tabu Search Code for
Multi-Dimensional Bin Packing Problems ∗

ANDREA LODI, SILVANO MARTELLO and DANIELE VIGO {alodi, smartello, dvigo}@deis.unibo.it
D.E.I.S., University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

Abstract. We present a computer code that implements a general Tabu Search technique for the solution
of two- and three-dimensional bin packing problems, as well as virtually any of their variants requiring
the minimization of the number of bins. The user is only requested to provide a procedure that gives an
approximate solution to the actual variant to be solved.

Keywords: packing, cutting, Tabu Search

1. Introduction

Several real-world optimization problems in the cutting and packing area require to al-
locate, without overlapping, a set of rectangular items to larger identical rectangular
standardized stock units (often called bins) by minimizing the number of needed bins.

In the Two-Dimensional Bin Packing Problem (2BP), each item j (j = 1, . . . , n)
is defined by its width, wj , and height, hj , and the bins are rectangles of width W and
height H . The problem arises, e.g., in wood and glass industries (cutting of rectangu-
lar components from large sheets of material), in warehousing contexts (placement of
goods on shelves), in newspapers paging (arrangement of articles and advertisements
into pages). In practical applications, a number of variants arise. The items may ei-
ther have a fixed orientation, or it may be admissible to rotate them in order to obtain
a better packing. In cutting contexts it may be required that the produced patterns are
guillotine cuttable, i.e., such that the items are obtained through a sequence of edge-
to-edge cuts parallel to the edges of the bin. Research on 2BP started in the Eighties:
Chung, Garey, and Johnson (1982) and Frenk and Galambos (1987) studied approxima-
tion algorithms with asymptotic worst-case performance guarantee, Berkey and Wang
(1987) presented extensions of classical one-dimensional bin packing approximation
algorithms, and Bengtsson (1982) proposed application-oriented heuristics. More re-
cently, Martello, and Vigo (1998) analyzed lower bounds and presented an exact branch-
and-bound approach, while Lodi, Martello, and Vigo (1998, 1999a, 1999b) proposed
heuristic algorithms, and developed the Tabu Search approach whose implementation is
discussed here.
∗ Support given by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and the Consiglio

Nazionale delle Ricerche (CNR), Italy.

204 LODI, MARTELLO AND VIGO

In the Three-Dimensional Bin Packing Problem (3BP), the items are boxes of width
wj , height hj and depth dj , while the bins are defined by width W , height H and
depth D. The problem finds applications in the loading area (containers, trucks, . . .) and
in cutting contexts. In this case too, variants may consider item rotation and guillotine
cutting. In addition, robot packable patterns have industrial relevance: a robot packing
can be achieved by successively placing the items starting from the bottom-left-behind
corner, and is such that each item is in front of, right of, or above each of the previously
placed items. A heuristic algorithm for 3BP was presented by Scheithauer (1991). Chen,
Lee, and Shen (1995) gave an integer programming formulation for the case where the
bins may have different sizes. Martello, Pisinger, and Vigo (2000) proposed an exact
algorithm (see also Pisinger et al. (2001)), while a Tabu Search approach was presented
by Lodi, Martello, and Vigo (2002a).

Surveys on packing problems have been given by Dyckhoff and Finke (1992),
Dowsland and Dowsland (1992), Lodi, Martello, and Vigo (2002b) and Lodi, Martello,
and Monaci (2002), while Dyckhoff, Scheithauer, and Terno (1997) have presented an
annotated bibliography.

Both 2BP and 3BP generalize the well-known One-Dimensional Bin Packing Prob-
lem (1BP), hence they are strongly NP-hard.

Computational experiments show that the exact solution of 2BP and 3BP instances
may be attained only for moderate-size instances, while the use of heuristics is needed
for larger instances. The object of this paper is the presentation of a computer code,
TSpack, that implements the general Tabu Search technique developed in Lodi, Martello,
and Vigo (1999b, 2002a). The code can be used for the solution of both 2BP and 3BP,
and virtually any of their variants calling for the minimization of the number of used
bins (including those allowing item rotation or requiring guillotine cutting). The user is
only requested to provide a procedure that gives an approximate solution to the actual
variant to be solved.

The algorithm is described in section 2, and the computer code is illustrated in
section 3. Extensions to other packing problems are discussed in section 4.

2. The algorithm

The general structure of algorithm TSpack is given in figure 1 adapted from Lodi,
Martello, and Vigo (1999b), and explained in the following.

The main characteristic of the approach is a unified parametric neighborhood which
is independent of the specific problem considered, and whose size is dynamically varied
during the search. More precisely, at each iteration of the main loop, the size and the
structure of a neighborhood are determined and a specific procedure, SEARCH (given
in figure 2 and discussed later in detail), is invoked to explore it. According to its output,
the exploration is iterated until a time (or iteration) limit is reached. There are a tabu
list and a tabu tenure for each neighborhood size.

The specific constraints of the problem just appear in a deterministic inner heuris-
tic, A, that produces a feasible solution for a given instance (or sub-instance) of 2BP or

TABU SEARCH FOR MULTI-DIMENSIONAL BIN PACKING 205

algorithm TSpack:
z∗ := A({1, . . . , n}) (comment: incumbent solution value);
let L be a lower bound on the optimal solution value;
if z∗ = L then stop;
initialize all tabu lists to empty;
pack each item into a separate bin;
z := n (comment: Tabu Search solution value);
d := 1;
determine the target bin t ;
while time (or iteration) limit is not reached do

diversify := false; k := 1;
while diversify = false and z∗ > L do

kin := k;
call SEARCH(t, k, diversify, z);
z∗ := min{z∗, z};
if k � kin then determine the new target bin t

end while;
if z∗ = L then stop
else call DIVERSIFICATION(d, z, t)

end while
end.

Figure 1. Algorithm TSpack.

3BP. Algorithm A is used to evaluate the moves within the neighborhood search. Let
A(S) be the output solution value returned by A when invoked for a (sub-)instance of
the problem induced by an input item set S.

Experimental observations show that the objective functions of multi-dimensional
bin packing problems are “flat,” in the sense that very many different solutions use the
same number of bins. Algorithm TSpack introduces a characterization of equivalent
solutions, based on the existence of a bin that packs less and/or smaller items than the
others, hence is more likely to be emptied through local optimization. The moves try
to empty this target bin, t , by changing the packing of a subset S of items made up by
one item, say j , from bin t , plus the current contents of k other bins, where k defines
the current neighborhood size. A new solution is then obtained by adding the A(S) bins
produced by A to the bins that currently pack items {1, . . . , n} \ S. This solution is
considered “acceptable” if the packing is changed and the overall number of bins used
does not exceed the current solution value. In other words, we are trying to move item j

out of bin t without creating extra bins.
The target bin is determined as follows. Let Si denote the set of items currently

packed into bin i, and α a user-specified positive value. Bin t is then the one minimizing,
over all current bins i, the filling function

ϕ(Si) = α

∑
j∈Si

vj

V
− |Si|

n
(1)

206 LODI, MARTELLO AND VIGO

procedure SEARCH(t, k, diversify, z):
penalty∗ := +∞;
for each j ∈ St do

for each k-tuple K of bins not including t do
S := {j } ∪ (

⋃
i∈K Si);

penalty := +∞;
case

A(S) < k:
execute the move and update the solution value z;
k := max{1, k − 1};
return;

A(S) = k:
if the move is not tabu or St ≡ {j } then

execute the move and update the solution value z;
if St ≡ {j } then k := max{1, k − 1};
return

end if;
A(S) = k + 1 and k > 1:

let I be the set of k + 1 bins used by A;
t̄ := arg mini∈I {ϕ(Si)}, T := (St \ {j }) ∪ St̄ ;
if A(T) = 1 and the move is not tabu then

penalty := min{ϕ(T), mini∈I\{t̄}{ϕ(Si)}}
end case;
penalty∗ := min{penalty∗, penalty};

end for;
end for;
if penalty∗ �= +∞ then execute the move corresponding to penalty∗
else if k = kmax then diversify := true else k := k + 1

return.

Figure 2. Algorithm TSpack: procedure SEARCH.

where {
vj = wjhj and V = WH for 2BP,
vj = wjhjdj and V = WHD for 3BP. (2)

As mentioned, the neighborhood is searched by procedure SEARCH, given in fig-
ure 2, taken from Lodi, Martello, and Vigo (1999b). For each item j in bin t , algorithm
A is executed on all the sub-instances induced by j and by all k-tuples of other bins.
Parameter k, that defines the size of the neighborhood, may be seen as a local intensifi-
cation/diversification tool. Its value is updated as follows. When a move decreases the
current number of used bins, or when a non-tabu move removes j from t by packing
the sub-instance in exactly k bins, the move is immediately performed, the neighbor-
hood size is reduced by one unit, and the control returns to the main algorithm. When,
instead, the neighborhood has been completely searched without finding an acceptable

TABU SEARCH FOR MULTI-DIMENSIONAL BIN PACKING 207

procedure DIVERSIFICATION(d, z, t):
if d � z and d < dmax then

d := d + 1;
let t be the bin with dth smallest value of ϕ(·);

else
remove from the solution the �z/2� bins with smallest ϕ(·) value;
pack into a separate bin each item currently packed in a removed bin;
reset all tabu lists to empty;
d := 1

return.

Figure 3. Algorithm TSpack: procedure DIVERSIFICATION.

move, its value is increased by one unit.
A move that is not immediately performed is evaluated through a penalty. The

penalty is infinity if the move is tabu, or if algorithm A used at least two extra bins
(i.e., A(S) > k + 1), or if k = 1. Otherwise (i.e., A(S) = k + 1 and k > 1), the
penalty is computed as follows. We determine a local target bin t̄ among the k + 1 bins
produced by A, and re-execute algorithm A on the sub-instance induced by the items in
bin t̄ plus the residual items in the target bin, in an attempt to get a single-bin solution. If
this happens, the penalty of the overall move is the minimum among the filling function
values computed for the k + 1 resulting bins; otherwise, the move is not acceptable and
its penalty is set to infinity.

When the neighborhood has been entirely searched without finding a move that
has to be immediately performed, the acceptable move having the minimum penalty (if
any) is performed and the control returns to TSpack. If, instead, no acceptable move has
been found, the neighborhood is enlarged by increasing the current value of parameter
k by one, or, if k already reached a maximum prefixed value kmax, by executing a global
diversification: according to the value of parameter d, two kinds of diversification are
performed, as shown in figure 3.

Each neighborhood has a tabu list and a tabu tenure τk (k = 1, . . . , kmax). For
k > 1, each list stores the penalty∗ values corresponding to the last τk moves performed
in the corresponding neighborhood. For k = 1 instead, since no penalty is computed
(see figure 2), the tabu list stores the values of the filling function, ϕ(·), corresponding
to the last τ1 sets for which a move has been performed.

The key aspect of the overall framework is the switch between neighborhoods of
different size. The main motivation of this choice is the attempt to efficiently alternate,
during the search process, intensification and diversification actions. On the one hand, a
small value of k implies, in general, the re-combination of few items, somehow assuming
that the overall structure of the current solution is “good”: the resulting neighborhoods
are small and their exploration is fast. On the other hand, greater values of k involve
much more items, i.e., a wider neighborhood, possibly producing a diversification action
that leads to a relevant change in the current solution structure.

208 LODI, MARTELLO AND VIGO

3. The code

The ANSI-C code implementing algorithm TSpack is available at: http://www.or.
deis.unibo.it/research_pages/ORcodes/ORcodes.htm and its use is
free for academic purposes. The code was compiled using both cc and gcc compil-
ers. It was also tested with the -pedantic option of gcc to check strict respect of the
ANSI-C standard.

The n items are numbered from 0 to n−1. The position of the items in the solution
is referred to a coordinate system having its origin in the lower-left(-front) corner of the
bin.

A prototype of TSpack appears as

int TSpack(int d, int n, int **w, int *W, int lb, float TL,
int *ub0, int **x, int *b)

Function TSpack returns the output number of used bins. The meaning of the
input parameters is:

d number of dimensions, d � 2 (tested values: 2, 3);

n size of the problem, i.e., number of items;

w d × n array giving the item sizes, i.e., w, h (and d), where w[0][j− 1] = wj ,
w[1][j− 1] = hj (and w[2][j− 1] = dj) for j = 1, . . . , n;

W d × 1 array giving the bin sizes, i.e., W , H (and D), where W[0] = W ,
W[1] = H (and W[2] = D);

lb lower bound on the optimal solution value (trivial value lb = 1 is acceptable);

TL time limit.

On output, the used bins are numbered from 0 to TSpack−1. The meaning of the
output parameters is:

ub0 intial upper bound as computed by the selected algorithm A;

x d × n array giving the coordinates of the point where the item lower-
left(-front) corner is packed, i.e., x[0][j− 1] = w-coordinate of item j ,
x[1][j− 1] = h-coordinate of item j (and x[2][j− 1] = d-coordinate of
item j) for j = 1, . . . , n;

b n × 1 array giving the number of the bin where each item is packed, i.e., item
j is packed in bin b[j-1]+1.

Procedure TSpack implements the pseudo-code given in figure 1, and invokes the
procedure SEARCH implementing the inner loop described by the pseudo-code given
in figure 2. Both procedures (together with some utility functions) are included in the
source-code file TSpack.c. The source-code file driver.c contains a simple driver

TABU SEARCH FOR MULTI-DIMENSIONAL BIN PACKING 209

program which reads from an input file either a 2BP or a 3BP instance and invokes
procedure TSpack. A couple of simple 2BP and 3BP instances with n = 10 are also
given to allow the user to initially test the code.

The current release of the code contains a pair of very simple heuristic algorithms
which can be used as inner heuristic (algorithm A) to test Two- and Three-Dimensional
problems. Specifically, we have implemented the classical Hybrid Next Fit algorithm for
2BP (see Johnson (1973)), and a possible adaptation of the same algorithm in the 3BP
context. Moreover, the code contains a straightforward implementation of the trivial
continuous lower bound LB = 	∑n

j=1 vj /V
, where vj and V are defined as in (2).
In order to facilitate the user in experimenting specific approaches or in adapting

the code to other packing contexts, procedures TSpack and SEARCH invoke generic
procedures for:

(i) inner heuristic;

(ii) lower bounding;

(iii) filling function;

(iv) penalty function.

The user selects the algorithms by setting the corresponding parameters in the header
file TSpack.h. In this way, he/she can easily enlarge the arsenal of the current release
by adding new algorithms for the procedures above, and try several configurations by
just changing the parameters’ selection.

Finally, the same header file also contains a default setting of the parameters which
characterize algorithm TSpack as described in section 2.

Distribution package

In conclusion, the distribution package TSpack.tar.gz contains the files:

1. TSpack.c and TSpack.h (source and header codes);

2. driver.c (driver program);

3. 2d.in and 3d.in (2BP and 3BP sample instances).

Web page and benchmark

The web page indicated above contains, together with the distribution package, the
output files of the algorithm on the classical Two- and Three-Dimensional bench-
mark instances described in Martello and Vigo (1998) and Martello, Pisinger, and
Vigo (2000), respectively. The source codes to generate these instances can be
downloaded from the web sites: http://www.or.deis.unibo.it/research_
pages/ORinstances/ORinstances.htm and http://www.diku.dk/∼
pisinger/codes.html for 2BP and 3BP, respectively. Specifically, files
2BP-500.txt and 3BP-500.txt contain the results obtained by executing TSpack

210 LODI, MARTELLO AND VIGO

Table 1
Tabu Search results for Multi-Dimensional Bin Packing Problems (Lodi, Martello, and Vigo, 1999b, 2002a).

Average number of bins over ten instances.

2BP: results from Lodi, Martello, and Vigo (1999b), kmax = 3.
AD = algorithm Alternate Directions, TS = TSpack (AD inner heuristic).

n = 20 n = 40 n = 60 n = 80 n = 100

Class AD TS AD TS AD TS AD TS AD TS

1 5.8 5.5 11.8 11.4 16.6 16.2 23.7 23.2 27.9 27.7
2 6.2 5.8 12.0 11.4 16.9 16.2 23.6 22.6 28.9 28.4
3 14.4 14.3 27.9 27.8 44.0 43.8 57.8 57.7 69.9 69.5
4 4.3 4.3 7.7 7.5 10.7 10.4 13.5 13.0 16.9 16.6
5 7.5 7.1 13.9 13.5 20.7 20.1 28.6 28.2 33.1 32.6
6 1.0 1.0 2.0 2.0 2.7 2.7 3.3 3.3 4.0 4.0
7 5.5 5.5 10.1 9.7 15.0 14.0 20.3 19.8 23.6 23.6
8 1.0 1.0 1.9 1.9 2.6 2.6 3.3 3.3 3.8 3.8
9 6.8 6.6 12.5 11.9 18.9 18.2 25.8 25.1 29.8 29.5

10 1.0 1.0 1.9 1.9 2.2 2.2 3.0 3.0 3.4 3.4

3BP: results from Lodi, Martello, and Vigo (2002a), kmax = 3.
HA = algorithm Height first-Area second, TS = TSpack (HA inner heuristic).

n = 50 n = 100 n = 150 n = 200

Class HA TS HA TS HA TS HA TS

1 13.9 13.4 27.6 27.1 38.1 37.3 52.7 51.9
2 14.2 13.8 27.0 25.8 38.7 37.5 51.4 50.5
3 14.0 13.4 27.1 26.3 39.1 38.1 52.1 50.6
4 29.4 29.4 59.0 59.0 86.9 86.8 119.0 118.8
5 8.5 8.4 15.8 15.1 21.4 20.7 28.6 28.0
6 10.5 9.9 20.0 19.3 30.6 29.7 39.1 38.2
7 8.0 7.5 13.3 12.6 17.2 16.5 25.2 24.6
8 9.9 9.3 19.9 19.0 25.7 24.6 31.6 31.0

on 500 2BP instances and 400 3BP instances, including one line for each test problem.
The inner heuristics used for these tests are the basic ones provided with the distribution
package, and the execution is halted after 500 Tabu Search iterations. Thus, these results
are just intended to give the user a starting point for his/her research. However, the re-
sults immediately show the good improvement produced with respect to the simple inner
heuristic. This is somehow obvious, but at the same time is a very important feature of
the code. Indeed, given a specific (sometimes tricky) bin packing problem, the user has
just to develop an inner heuristic with the unique requirement that it produces a feasible
solution. TSpack takes then care of the whole optimization process.

Although very simple inner heuristics can already provide good final solutions,
tuned versions of TSpack using effective heuristics proved to be very effective for 2BP
and 3BP, often finding state-of-the-art results (see Lodi, Martello, and Vigo (1999b,
2002a)). These results are summarized in table 1.

TABU SEARCH FOR MULTI-DIMENSIONAL BIN PACKING 211

The ‘2BP’ part of the table gives the results obtained, within 60 CPU seconds, on
a Silicon Graphics INDY R10000sc (195 MHz). Instance classes 1–4 were proposed
by Martello and Vigo (1998), classes 5–10 by Berkey and Wang (1987) (see also Lodi,
Martello, and Vigo (1999b) for details). For each pair (instance size n, instance Class)
the entries give the average number of bins (computed over ten instances) used by the
inner heuristic alternate Directions (AD, see Lodi, Martello, and Vigo (1999b)) and by
the Tabu Search. The ‘3BP’ part of the Table has the same structure and reports results
obtained within 60 CPU seconds on a Digital Alpha 533 MHz. The instance classes
are those described in Martello, Pisinger, and Vigo (2000), and the inner heuristic is
algorithm Height first-Area second (HA, see Lodi, Martello, and Vigo (2002a)).

4. Extensions

As already mentioned, several basic extensions of 2BP and 3BP, as those allowing item
rotation or requiring guillotine packing, may be directly solved by TSpack by simply
providing a suitable inner heuristic. In this section we discuss further extensions of the
code for the solution of other multi-dimensional packing problems.

The first family of problems we consider involves single-bin packing. Two main
problems arise, known as the Strip Packing Problem in the two-dimensional case and
the Container Loading Problem in the three-dimensional one, in which there is a unique
bin, whose size is infinite in one dimension (say, the height) and finite in the remaining
one(s). The objective is to allocate all the items by minimizing the height to which the
bin is used.

In the second family of problems, known as Multi-Dimensional Knapsack Prob-
lems, there is a single multi-dimensional bin and each item is associated with a given
numerical value (profit). The objective is to pack a subset of items whose total profit is
a maximum.

The above single-container problems cannot be directly solved by TSpack. How-
ever, the code can be modified so as to handle a relevant variant of both families, namely
the one requiring that the items are packed in rows forming layers (see figure 4). This
kind of packing is known as level packing in the bin/strip context, and as 2- and 3-staged
cutting in the knapsack context (see Lodi, Martello, and Vigo (2004)). A relevant aspect
of these variants is that the resulting packings can be automatically separated through
guillotine cuts, as frequently required in several industrial applications.

Since the levels can be seen as separate bins of different heights, single-bin level-
packing problems can be solved by modifying TSpack so as to pack the items in separate
levels rather than into bins. For the first family of problems, the current set of levels may
then be aggregated by simply placing them one above the other. For the second family
instead, it is necessary to select a subset of the obtained levels. This can be done by
solving (either exactly or heuristically) an associated one-dimensional knapsack problem
in which: (i) there is an “element” per level, whose profit is the sum of the profits of the
items it packs, while its weight is the level height; (ii) the knapsack capacity is the height
of the bin.

212 LODI, MARTELLO AND VIGO

Figure 4. Two- and three-dimensional level packings.

Acknowledgments

The authors warmly thank John Sozinov for his help in testing the code and fixing some
bugs. Thanks are also due to an anonymous referee for helpful comments.

References

Bengtsson, B.E. (1982). “Packing Rectangular Pieces – A Heuristic Approach.” The Computer Journal 25,
353–357.

Berkey, J.O. and P.Y. Wang. (1987). “Two Dimensional Finite Bin Packing Algorithms.” Journal of the
Operational Research Society 38, 423–429.

Chen, C.S., S.M. Lee, and Q.S. Shen. (1995). “An Analytical Model for the Container Loading Problem.”
European Journal of Operational Research 80, 68–76.

Chung, F.K.R., M.R. Garey, and D.S. Johnson. (1982). “On Packing Two-Dimensional Bins.” SIAM Journal
of Algebraic and Discrete Methods 3, 66–76.

Dowsland, K.A. and W.B. Dowsland. (1992). “Packing Problems.” European Journal of Operational Re-
search 56, 2–14.

Dyckhoff, H. and U. Finke. (1992). Cutting and Packing in Production and Distribution. Heidelberg: Phys-
ica Verlag.

Dyckhoff, H., G. Scheithauer, and J. Terno. (1997). “Cutting and Packing (C&P).” In M. Dell’Amico,
F. Maffioli, and S. Martello (eds.), Annotated Bibliographies in Combinatorial Optimization. Chichester:
Wiley, pp. 393–413.

Frenk, J.B. and G.G. Galambos. (1987). “Hybrid Next-Fit Algorithm for the Two-Dimensional Rectangle
Bin-Packing Problem.” Computing 39, 201–217.

Johnson, D.S. (1973). “Near-Optimal Bin Packing Algorithms.” Ph.D. Thesis, MIT, Cambridge, MA.
Lodi, A., S. Martello, and M. Monaci. (2002). “Two-Dimensional Packing Probles: A Survey.” European

Journal of Operational Research 141, 241–252.
Lodi, A., S. Martello, and D. Vigo. (1998). “Neighborhood Search Algorithm for the Guillotine Non-

Oriented Two-Dimensional Bin Packing Problem.” In S. Voss, S. Martello, I.H. Osman, and C. Roucairol

TABU SEARCH FOR MULTI-DIMENSIONAL BIN PACKING 213

(eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston:
Kluwer Academic, pp. 125–139.

Lodi, A., S. Martello, and D. Vigo. (1999a). “Approximation Algorithms for the Oriented Two-Dimensional
Bin Packing Problem.” European Journal of Operational Research 112, 158–166.

Lodi, A., S. Martello, and D. Vigo. (1999b). “Heuristic and Metaheuristic Approaches for a Class of Two-
Dimensional Bin Packing Problems.” INFORMS Journal on Computing 11, 345–357.

Lodi, A., S. Martello, and D. Vigo. (2002a). “Heuristic Algorithms for the Three-Dimensional Bin Packing
Problem.” European Journal of Operational Research 141, 410–420.

Lodi, A., S. Martello, and D. Vigo. (2002b). “Recent Advances on Two-Dimensional Bin Packing Prob-
lems.” Discrete Applied Mathematics 123, 379–396.

Lodi, A., S. Martello, and D. Vigo. (2004). “Models and Bounds for Two-Dimensional Level Packing
Problems.” Journal of Combinatorial Optimization 8, 363–379.

Martello, S., D. Pisinger, and D. Vigo. (2000). “The Three-Dimensional Bin Packing Problem.” Operations
Research 48, 256–267.

Martello, S. and D. Vigo. (1998). “Exact Solution of the Two-Dimensional Finite Bin Packing Problem.”
Management Science 44, 388–399.

Pisinger, D., E. den Boef, J. Korst, S. Martello, and D. Vigo. (2001). “Robot-Packable and General Vari-
ants of the Three-Dimensional Bin Packing Problem.” Technical Report 01/05, DIKU, University of
Copenhagen.

Scheithauer, G. (1991). “A Three-Dimensional Bin Packing Algorithm.” J. Inform. Process. Cybernet. 27,
263–271.

